Degree of Specificity of the Synaptic Contacts during Neurotransplantation
- Authors: Zhuravleva Z.N1
-
Affiliations:
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Issue: Vol 69, No 4 (2024)
- Pages: 758–765
- Section: Cell biophysics
- URL: https://journals.rcsi.science/0006-3029/article/view/264941
- DOI: https://doi.org/10.31857/S0006302924040089
- EDN: https://elibrary.ru/NHJDKX
- ID: 264941
Cite item
Abstract
About the authors
Z. N Zhuravleva
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: zina_zhur@mail.ru
Pushchino, Russia
References
- Citri A. and Malenka R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33 (1), 18–41 (2008). doi: 10.1038/sj.npp.1301559
- Gulyeva N. V. Molecular mechanisms of neuroplasticity: an expanding universe. Biochemistry (Moscow), 82 (3), 237–242 (2017). doi: 10.1134/S0006297917030014
- Zaman V. and Shetty A. K. Fetal hippocampal CA3 cell grafts enriched with fibroblast growth factor-2 exhibit enhanced neuronal integration into the lesioned aging rat hippocampus in a kainate model of temporal lobe epilepsy. Hippocampus, 13 (5), 618–632 (2003). doi: 10.1002/hipo.10091
- Cardoso T., Adler A. F., Mattsson B., Hoban D. B., Nolbrant S., Wahlestedt J. N., Kirkeby A., Grealish S., Bjorklund A., and Parmar M. Target-specific forebrain projections and appropriate synaptic inputs of hESCderived dopamine neurons grafted to the midbrain of parkinsonian rats. J. Comp. Neurol., 526, 2133–2146 (2018). doi: 10.1002/cne.24500
- Droguerre M., Brot S., Vitrac C., Benoit-Marand M., Belnoue L., Patrigeon M., Laine A., Bere E., Jaber M., and Gaillard A. Better outcomes with intranigral versus intrastriatal cell transplantation: relevance for Parkinson’s disease. Cells, 11, 1191-1224 (2022). doi: 10.3390/cells11071191
- Magavi S. S. P. and Lois C. Transplanted neurons form both normal and ectopic projections in the adult brain. Dev. Neurobiol., 68 (14), 1527–1537 (2008). doi: 10.1002/dneu.20677
- Zhuravleva Z. N., Mugantseva E. A. and ZhuravlevG. I. Microscopic study of nervous system plasticity: Interactions of sympathetic nerves with neurons of intraocular hippocampal transplants. Bull. Exp. Biol. Med., 164 (5), 680–684 (2018). doi: 10.1007/S10517-018-4058-1
- Gerrow K., Romorini S., Nabi S. M., Colicos M. A., Sala C., and El-Husseini A. A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron, 49 (4), 547–562 (2006). doi: 10.1016/j.neuron.2006.01.015
- Colon-Ramos D. A. Synapse formation in developing neural circuits. Curr. Top. Dev. Biol., 87, 53–79 (2009). doi: 10.1016/S0070-2153(09)01202-2
- Косицын Н. С. Микроструктура дендритов и аксодендритических связей ЦНС (Наука, М., 1976).
- Vinogradova O. S. Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus, 11 (5), 578–598 (2001). doi: 10.1002/hipo.1073
- Zhuravleva Z. N. Ultrastructural signs of regenerativedegenerative processes in long-term dentate fascia grafts. J. Neural Transpl. Plast., 5 (3), 183–197 (1994). doi: 10.1155/NP.1994.183
- Hamlyn L. H. The fine structure of the mossy fibre endings in the hippocampus of the rabbit. J. Anat. (Lond.), 96 (1), 112–120 (1962). PMID: 13904141
- Rollenhagen A., Satzler K., Rodriguez E. P., Jonas P., Frotscher M., and Lubke J. H. R. Structural determinants of transmission at large hippocampal mossy fiber synapses. J. Neurosci., 27 (39), 10434–10444 (2007). doi: 10.1523/JNEUROSCI.1946-07.2007
- Henze D. A., Urban N. N., and Barrionuevo G. The multifarious hippocampal mossy fiber pathway: A review. Neurosci., 98 (3), 407−427 (2000). doi: 10.1016/s0306-4522(00)00146-9
- Colon-Ramos D. A. and Shen K. Cellular conductors: Glial cells as guideposts during neural circuit development. PLoS. Biol., 6 (4), e112 (2008). DOI: 10.1371/ journal.pbio.0060112
- Sun C., Nold A., Fusco C. M., Rangaraju V., Tchumatchenko T., Heilemann M., and Schuman E. M. The prevalence and specificity of local protein synthesis during neuronal synaptic plasticity. Sci. Adv., 7 (38):eabj0790 (2021). DOI: doi: 10.1126/sciadv.abj0790
- Yamada A., Irie K., Deguchi-Tawarada M., OhtsukaT., and Takai Y. Nectin-dependent localization of synaptic scaffolding molecule (S-SCAM) at the puncta adherentia junctions formed between the mossy fiber terminals and the dendrites of pyramidal cells in the CA3 area of the mouse hippocampus. Genes Cells, 8 (12), 985–994 (2003). doi: 10.1046/j.1356-9597.2003.00690.x
- Hoy J. L., Constable J. R., Vicini S., Fu Z., and Washbourne P. SynCAM1 recruits NMDA receptors via Protein 4.1B. Mol. Cell. Neurosci., 42 (4), 466–483 (2009). doi: 10.1016/j.mcn.2009.09.010
- Mizoguchi A., Nakanishi H., Kimura K., Matsubara K., Ozaki-Kuroda K., Katata T., Honda T., Kiyohara Y., Heo K., Higashi M., Tsutsumi T., Sonoda S., Ide C., and Takai Y. Nectin: an adhesion molecule involved in formation of synapses. J. Cell. Biol., 156 (3), 555–565 (2002). doi: 10.1083/jcb.200103113
- Iida J., Hirabayashi S., SatoY., and Hata Y. Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin. Mol. Cell. Neurosci., 27 (4), 497–508 (2004). doi: 10.1016/j.mcn.2004.08.006
- Falkner S., Grade S., Dimou L., Conzelmann K. K., Bonhoeffer T., Gotz M., and Hubener M. Transplanted embryonic neurons integrate into adult neocortical circuits. Nature, 539, 248–253 (2016). doi: 10.1038/nature20113
- Shetty A. K., Zaman V. and Turner D. A. Pattern of long-distance projections from fetal hippocampal field CA3 and CA1 cell grafts in lesioned CA3 of adult hippocampus follows intrinsic character of respective donor cells. Neurosci., 99 (2), 243–255 (2000). doi: 10.1016/S0306-4522(00)00178-0
Supplementary files
