Degree of Specificity of the Synaptic Contacts during Neurotransplantation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Transplantation of immature neural tissue is a promising biotechnological approach for restoring damaged brain circuitry. The success of transplantation therapy depends on implementation of the genetic program of differentiation of donor neural progenitors and the accuracy of neural connections both in the grafts themselves and in the recipient’s brain. The aim of this work was to study the degree of specificity of synaptic connections during transplantation of the hippocampal formation into the neocortex of rats. Electron microscopy was used in this study, and after analysis of the obtained images it was found that specific forms of synapses, which were topographically correctly located on the neuronal soma-dendritic surface, were predominantly differentiated in the grafts. The axons of the grafted neurons growing into the recipient's brain formed synaptic connections with neurons that were unusual for them normally. During the formation of nonspecific axonal connections, they modified the composition and distribution of neurotransmitter vesicles in presynaptic terminals, and also induced structural and chemical reorganization in postsynaptic dendrites.

作者简介

Z. Zhuravleva

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: zina_zhur@mail.ru
Pushchino, Russia

参考

  1. Citri A. and Malenka R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33 (1), 18–41 (2008). doi: 10.1038/sj.npp.1301559
  2. Gulyeva N. V. Molecular mechanisms of neuroplasticity: an expanding universe. Biochemistry (Moscow), 82 (3), 237–242 (2017). doi: 10.1134/S0006297917030014
  3. Zaman V. and Shetty A. K. Fetal hippocampal CA3 cell grafts enriched with fibroblast growth factor-2 exhibit enhanced neuronal integration into the lesioned aging rat hippocampus in a kainate model of temporal lobe epilepsy. Hippocampus, 13 (5), 618–632 (2003). doi: 10.1002/hipo.10091
  4. Cardoso T., Adler A. F., Mattsson B., Hoban D. B., Nolbrant S., Wahlestedt J. N., Kirkeby A., Grealish S., Bjorklund A., and Parmar M. Target-specific forebrain projections and appropriate synaptic inputs of hESCderived dopamine neurons grafted to the midbrain of parkinsonian rats. J. Comp. Neurol., 526, 2133–2146 (2018). doi: 10.1002/cne.24500
  5. Droguerre M., Brot S., Vitrac C., Benoit-Marand M., Belnoue L., Patrigeon M., Laine A., Bere E., Jaber M., and Gaillard A. Better outcomes with intranigral versus intrastriatal cell transplantation: relevance for Parkinson’s disease. Cells, 11, 1191-1224 (2022). doi: 10.3390/cells11071191
  6. Magavi S. S. P. and Lois C. Transplanted neurons form both normal and ectopic projections in the adult brain. Dev. Neurobiol., 68 (14), 1527–1537 (2008). doi: 10.1002/dneu.20677
  7. Zhuravleva Z. N., Mugantseva E. A. and ZhuravlevG. I. Microscopic study of nervous system plasticity: Interactions of sympathetic nerves with neurons of intraocular hippocampal transplants. Bull. Exp. Biol. Med., 164 (5), 680–684 (2018). doi: 10.1007/S10517-018-4058-1
  8. Gerrow K., Romorini S., Nabi S. M., Colicos M. A., Sala C., and El-Husseini A. A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron, 49 (4), 547–562 (2006). doi: 10.1016/j.neuron.2006.01.015
  9. Colon-Ramos D. A. Synapse formation in developing neural circuits. Curr. Top. Dev. Biol., 87, 53–79 (2009). doi: 10.1016/S0070-2153(09)01202-2
  10. Косицын Н. С. Микроструктура дендритов и аксодендритических связей ЦНС (Наука, М., 1976).
  11. Vinogradova O. S. Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus, 11 (5), 578–598 (2001). doi: 10.1002/hipo.1073
  12. Zhuravleva Z. N. Ultrastructural signs of regenerativedegenerative processes in long-term dentate fascia grafts. J. Neural Transpl. Plast., 5 (3), 183–197 (1994). doi: 10.1155/NP.1994.183
  13. Hamlyn L. H. The fine structure of the mossy fibre endings in the hippocampus of the rabbit. J. Anat. (Lond.), 96 (1), 112–120 (1962). PMID: 13904141
  14. Rollenhagen A., Satzler K., Rodriguez E. P., Jonas P., Frotscher M., and Lubke J. H. R. Structural determinants of transmission at large hippocampal mossy fiber synapses. J. Neurosci., 27 (39), 10434–10444 (2007). doi: 10.1523/JNEUROSCI.1946-07.2007
  15. Henze D. A., Urban N. N., and Barrionuevo G. The multifarious hippocampal mossy fiber pathway: A review. Neurosci., 98 (3), 407−427 (2000). doi: 10.1016/s0306-4522(00)00146-9
  16. Colon-Ramos D. A. and Shen K. Cellular conductors: Glial cells as guideposts during neural circuit development. PLoS. Biol., 6 (4), e112 (2008). DOI: 10.1371/ journal.pbio.0060112
  17. Sun C., Nold A., Fusco C. M., Rangaraju V., Tchumatchenko T., Heilemann M., and Schuman E. M. The prevalence and specificity of local protein synthesis during neuronal synaptic plasticity. Sci. Adv., 7 (38):eabj0790 (2021). DOI: doi: 10.1126/sciadv.abj0790
  18. Yamada A., Irie K., Deguchi-Tawarada M., OhtsukaT., and Takai Y. Nectin-dependent localization of synaptic scaffolding molecule (S-SCAM) at the puncta adherentia junctions formed between the mossy fiber terminals and the dendrites of pyramidal cells in the CA3 area of the mouse hippocampus. Genes Cells, 8 (12), 985–994 (2003). doi: 10.1046/j.1356-9597.2003.00690.x
  19. Hoy J. L., Constable J. R., Vicini S., Fu Z., and Washbourne P. SynCAM1 recruits NMDA receptors via Protein 4.1B. Mol. Cell. Neurosci., 42 (4), 466–483 (2009). doi: 10.1016/j.mcn.2009.09.010
  20. Mizoguchi A., Nakanishi H., Kimura K., Matsubara K., Ozaki-Kuroda K., Katata T., Honda T., Kiyohara Y., Heo K., Higashi M., Tsutsumi T., Sonoda S., Ide C., and Takai Y. Nectin: an adhesion molecule involved in formation of synapses. J. Cell. Biol., 156 (3), 555–565 (2002). doi: 10.1083/jcb.200103113
  21. Iida J., Hirabayashi S., SatoY., and Hata Y. Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin. Mol. Cell. Neurosci., 27 (4), 497–508 (2004). doi: 10.1016/j.mcn.2004.08.006
  22. Falkner S., Grade S., Dimou L., Conzelmann K. K., Bonhoeffer T., Gotz M., and Hubener M. Transplanted embryonic neurons integrate into adult neocortical circuits. Nature, 539, 248–253 (2016). doi: 10.1038/nature20113
  23. Shetty A. K., Zaman V. and Turner D. A. Pattern of long-distance projections from fetal hippocampal field CA3 and CA1 cell grafts in lesioned CA3 of adult hippocampus follows intrinsic character of respective donor cells. Neurosci., 99 (2), 243–255 (2000). doi: 10.1016/S0306-4522(00)00178-0

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##