Evolution of Ideas about the Mechanisms of Neuronal Network Hyperactivation and Burst Firing in Epilepsy. Contribution of Potassium-Induced Activation of Potassium-Conducting Channels to Network Hyperactivation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review discusses the current understanding of the molecular mechanisms of pathological hyperexcitation and synchronization of neuronal networks in epileptogenesis, including potassium, GABA, membrane (cellular), and synaptic (network) models. The focus of these models is the disturbance of the balance between excitation and inhibition involving multiple positive and negative feedback loops (PFL/NFL) in neuronal networks. This paper considers current ideas about (1) the robustness of dynamical systems with many NFLs, and (2) degeneracy, i.e., the ability of heterogeneous elements (channels, currents) to replace each other, as the basis for the stable functioning of hyperexcited networks in channelopathies and ion channel hyperexpression. In this work, a potential mechanism of spontaneous seizure onset and potassium accumulation in the intercellular space is proposed; it is based on potassium- and calcium-induced activation of a group of cation channels (HCN, Kir2.x, hERG, Nav1.х, and ВКСа) and ensures the robustness and high sensitivity of epileptiform activity to external and internal factors due to degeneracy and PFLs formation.

About the authors

A. S Galashin

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

M. V Konakov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

V. V Dynnik

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: dynnik@rambler.ru
Pushchino, Russia

References

  1. Shao J., Liu Y., Gao D., Tu J., and Yang F. Neural burst firing and its roles in mental and neurological disorders. Front. Cell. Neurosci., 15, 741292 (2021). doi: 10.3389/fncel.2021.741292
  2. Targa D. A. H., Matosin N., and Ooi L. Neuronal hyperexcitability in Alzheimer’s disease: what are the drivers behind this aberrant phenotype? Transl. Psychiatry, 12, 257 (2022). doi: 10.1038/s41398-022-02024-7
  3. Telias M. and Segal M. Editorial: Pathological hyperactivity and hyperexcitability in the central nervous system. Front. Mol. Neurosci., 15, 955542 (2022). doi: 10.3389/fnmol.2022.955542
  4. Stober T. M., Batulin D., Triesch J., Narayanan R., and Jedlicka P. Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Commun. Biol., 6, 479 (2023). doi: 10.1038/s42003-023-04823-0
  5. Chauhan P., Philip S. E., Chauhan G., and Mehra S. The anatomical basis of seizures. In Epilepsy, Ed. By S. J. Czuczwar (Exon Publications, Brisbane (AU), 2022), pp. 15–23.
  6. Antonio L. L., Anderson M. L., Angamo E. A., Gabriel S., Klaft Z.-J., Liotta A., Salar S., Sandow N., and Heinemann U. In vitro seizure like events and changes in ionic concentration. J. Neurosci. Methods, 260, 33–44 (2016). doi: 10.1016/j.jneumeth.2015.08.014
  7. de Curtis M., Uva L., Gnatkovsky V., and Librizzi L. Potassium dynamics and seizures: why is potassium ictogenic? Epilepsy Res., 143, 50–59 (2018). doi: 10.1016/j.eplepsyres.2018.04.005
  8. Rasmussen R., O’Donnell J., Ding F., and Nedergaard M. Interstitial ions: a key regulator of statedependent neural activity? Prog. Neurobiol., 193, 101802 (2020). doi: 10.1016/j.pneurobio.2020.101802
  9. Raimondo J. V., Burman R. J., Katz A. A., and Akerman C. J. Ion dynamics during seizures. Front. Cell. Neurosci., 9, 419 (2015). doi: 10.3389/fncel.2015.00419
  10. Liotta A., Caliskan G., ul Haq R., Hollnagel J. O., Rosler A., Heinemann U., and Behrens C. J. Partial disinhibition is required for transition of stimulus-induced sharp wave-ripple complexes into recurrent epileptiform discharges in rat hippocampal slices. J. Neurophysiol., 105, 172–187 (2011). doi: 10.1152/jn.00186.2010
  11. Teplov I. Y., Zinchenko V. P., Kosenkov A. M., Gaidin S. G., Nenov M. N., and Sergeev A. I. Involvement of NMDA and GABA(A) receptors in modulation of spontaneous activity in hippocampal culture: Interrelations between burst firing and intracellular calcium signal. Biochem. Biophys. Res. Commun., 553, 99–106 (2021). doi: 10.1016/j.bbrc.2021.02.149
  12. Krahe R. and Gabbiani F. Burst firing in sensory systems. Nat. Rev. Neurosci., 5, 13–23 (2004). doi: 10.1038/nrn1296
  13. Sills G. J. and Rogawski M. A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology, 168, 107966 (2020). doi: 10.1016/j.neuropharm.2020.107966
  14. Manford M. Recent advances in epilepsy. J. Neurol., 264, 1811–1824 (2017). doi: 10.1007/s00415-017-8394-2
  15. Chen Z., Brodie M. J., Liew D., and Kwan P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol., 75, 279–286 (2018). doi: 10.1001/jamaneurol.2017.3949
  16. Kohling R. and Wolfart J. Potassium channels in epilepsy. Cold Spring Harb. Perspect. Med., 6, a022871 (2016). doi: 10.1101/cshperspect.a022871
  17. Villa C. and Combi R. Potassium channels and human epileptic phenotypes: an updated overview. Front. Cell. Neurosci., 10, 81 (2016). doi: 10.3389/fncel.2016.00081
  18. van Loo K. M. J. and Becker A. J. Transcriptional regulation of channelopathies in genetic and acquired epilepsies. Front. Cell. Neurosci., 13, 587 (2019). doi: 10.3389/fncel.2019.00587
  19. Nikitin E. S. and Vinogradova L. V. Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin. Ther. Targets, 25, 223–235 (2021). doi: 10.1080/14728222.2021.1908263
  20. Khan R., Chaturvedi P., Sahu P., Ludhiadch A., Singh P., Singh G., and Munshi A. Role of potassium ion channels in epilepsy: focus on current therapeutic strategies. CNS Neurol. Disord. Drug Targets, 23, 67–87 (2024). doi: 10.2174/1871527322666221227112621
  21. Brickel N., Hewett K., Rayner K., McDonald S., De’Ath J., Daniluk J., Joshi K., Boll M. C., Tiamkao S., Vorobyeva O., and Cooper J. Safety of retigabine in adults with partial-onset seizures after longterm exposure: focus on unexpected ophthalmological and dermatological events. Epilepsy Behav., 102, 106580 (2020). doi: 10.1016/j.yebeh.2019.106580
  22. Di Cristo G., Awad P. N., Hamidi S., and Avoli M. KCC2, epileptiform synchronization, and epileptic disorders. Prog. Neurobiol., 162, 1–16 (2018). doi: 10.1016/j.pneurobio.2017.11.002
  23. McMoneagle E., Zhou J., Zhang S., Huang W., Josiah S. S., Ding K., Wang Y., and Zhang J. Neuronal K+-Cl- cotransporter KCC2 as a promising drug target for epilepsy treatment. Acta Pharmacol. Sin., 45, 1–22 (2024). doi: 10.1038/s41401-023-01149-9
  24. Traynelis S. F. and Dingledine R. Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol., 59, 259–276 (1988). doi: 10.1152/jn.1988.59.1.259
  25. Fertziger A. P. and Ranck J. B. Potassium accumulation in interstitial space during epileptiform seizures. Exp. Neurol., 26, 571–585 (1970). doi: 10.1016/0014-4886(70)90150-0
  26. Frohlich F., Bazhenov M., Iragui-Madoz V., and Sejnowski T. J. Potassium dynamics in the epileptic cortex: new insights on an old topic. Neuroscientist, 14, 422–433 (2008). doi: 10.1177/1073858408317955
  27. Zuckermann E. C. and Glaser G. H. Hippocampal epileptic activity induced by localized ventricular perfusion with high-potassium cerebrospinal fluid. Exp. Neurol., 20, 87–110 (1968). doi: 10.1016/0014-4886(68)90126-x
  28. Somjen G. G. and Muller M. Potassium-induced enhancement of persistent inward current in hippocampal neurons in isolation and in tissue slices. Brain Res., 885, 102–110 (2000). doi: 10.1016/s0006-8993(00)02948-6
  29. Wang L., Dufour S., Valiante T. A., and Carlen P. L. Extracellular potassium and seizures: excitation, inhibition and the role of Ih. Int. J. Neural. Syst., 26, 1650044 (2016). doi: 10.1142/S0129065716500441
  30. Dynnik V. V., Kononov A. V., Sergeev A. I., Teplov I. Y., Tankanag A. V., and Zinchenko V. P. To break or to brake neuronal network accelerated by ammonium ions? PLoS One, 10, e0134145 (2015). doi: 10.1371/journal.pone.0134145
  31. Зинченко В. П., Туровский Е. А., Туровская М. В., Бережнов А. В., Сергеев А. И. и Дынник В. В. NAD вызывает диссоциацию нейронных сетей на субпопуляции нейронов, подавляя синхронную гиперактивность сетей, индуцированную ионами аммония. Биологические мембраны, 33, 150–158 (2016). doi: 10.7868/S0233475516020134
  32. Spain W. J., Schwindt P. C., and Crill W. E. Anomalous rectification in neurons from cat sensorimotor cortex in vitro. J. Neurophysiol., 57, 1555–1576 (1987). doi: 10.1152/jn.1987.57.5.1555
  33. David Y., Cacheaux L. P., Ivens S., Lapilover E., Heinemann U., Kaufer D., and Friedman A. Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J. Neurosci., 29, 10588–10599 (2009). doi: 10.1523/JNEUROSCI.2323-09.2009
  34. Gentiletti D., de Curtis M., Gnatkovsky V., and Suffczynski P. Focal seizures are organized by feedback between neural activity and ion concentration changes. Elife, 11, e68541 (2022). doi: 10.7554/eLife.68541
  35. Scalmani P., Paterra R., Mantegazza M., Avoli M., and de Curtis M. Involvement of GABAergic interneuron subtypes in 4-aminopyridine-induced seizure-like events in mouse entorhinal cortex in vitro. J. Neurosci., 43, 1987–2001 (2023). doi: 10.1523/JNEUROSCI.1190-22.2023
  36. Dudek F. E. Loss of GABAergic interneurons in seizureinduced epileptogenesis-two decades later and in a more complex world. Epilepsy Curr., 20, 70S–72S (2020). doi: 10.1177/1535759720960464
  37. Bradford H. F. Glutamate, GABA and epilepsy. Prog. Neurobiol., 47, 477–511 (1995). doi: 10.1016/0301-0082(95)00030-5
  38. Dossi E. and Huberfeld G. GABAergic circuits drive focal seizures. Neurobiol. Dis., 180, 106102 (2023). doi: 10.1016/j.nbd.2023.106102
  39. Yekhlef L., Breschi G. L., Lagostena L., Russo G., and Taverna S. Selective activation of parvalbumin- or somatostatinexpressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex. J. Neurophysiol., 113, 1616–1630 (2015). doi: 10.1152/jn.00841.2014
  40. Rutecki P. A., Lebeda F. J., and Johnston D. 4-Aminopyridine produces epileptiform activity in hippocampus and enhances synaptic excitation and inhibition. J. Neurophysiol., 57, 1911–1924 (1987). doi: 10.1152/jn.1987.57.6.1911
  41. Bragin A., Azizyan A., Almajano J., and Engel J. The cause of the imbalance in the neuronal network leading to seizure activity can be predicted by the electrographic pattern of the seizure onset. J. Neurosci., 29, 3660–3671 (2009). doi: 10.1523/JNEUROSCI.5309-08.2009
  42. Hablitz J. J. and Johnston D. Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons. Cell. Mol. Neurobiol., 1, 325–334 (1981). doi: 10.1007/BF00716267
  43. Johnston D. and Brown T. Mechanisms of neuronal burst generation. In Electrophysiology of Epilepsy (Academic Press, Inc., London, 1984), pp. 278–301.
  44. Pan E. and Stringer J. L. Role of potassium and calcium in the generation of cellular bursts in the dentate gyrus. J. Neurophysiol. 77, 2293–2299 (1997). doi: 10.1152/jn.1997.77.5.2293
  45. Jensen M. S. and Yaari Y. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J. Neurophysiol., 77, 1224–1233 (1997). doi: 10.1152/jn.1997.77.3.1224
  46. Lee-Liu D. and Gonzalez-Billault C. Neuron-intrinsic origin of hyperexcitability during early pathogenesis of Alzheimer’s disease: An editorial highlight for "Hippocampal hyperactivity in a rat model of Alzheimer’s disease" on https://doi.org/10.1111/jnc.15323. J. Neurochem., 158, 586–588 (2021). doi: 10.1111/jnc.15248
  47. Sanabria E. R., Su H., and Yaari Y. Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy. J. Physiol., 532, 205–216 (2001). doi: 10.1111/j.1469-7793.2001.0205g.x
  48. Hofer K. T., Kandracs A., Toth K., Hajnal B., Bokodi V., Toth E. Z., Erőss L., Entz L., Bago A. G., Fabo D., Ulbert I., and Wittner L. Bursting of excitatory cells is linked to interictal epileptic discharge generation in humans. Sci. Rep., 12, 6280 (2022). doi: 10.1038/s41598-022-10319-4
  49. Whisler J. W. and Johnston D. Epileptogenesis: a model for the involvement of slow membrane events and extracellular potassium. J. Theor. Biol., 75, 271–278 (1978). doi: 10.1016/0022-5193(78)90334-x
  50. de Curtis M., Librizzi L., and Uva L. In vitro isolated guinea pig brain. In Models of Seizures and Epilepsy 103–109 (Academic Press Inc., 2006).
  51. Jirsa V. K., Stacey W. C., Quilichini P. P., Ivanov A. I., and Bernard C. On the nature of seizure dynamics. Brain, 137, 2210–2230 (2014). doi: 10.1093/brain/awu133
  52. Rasmussen R., Jensen M. H., and Heltberg M. L. Chaotic dynamics mediate brain state transitions, driven by changes in extracellular ion concentrations. Cell Syst., 5, 591−603 (2017). doi: 10.1016/j.cels.2017.11.011
  53. Depannemaecker D., Ivanov A., Lillo D., Spek L., Bernard C., and Jirsa V. A unified physiological framework of transitions between seizures, sustained ictal activity and depolarization block at the single neuron level. J. Comput. Neurosci., 50, 33–49 (2022). doi: 10.1007/s10827-022-00811-1
  54. Gonzalez O. C., Shiri Z., Krishnan G. P., Myers T. L., Williams S., Avoli M., and Bazhenov M. Role of KCC2-dependent potassium efflux in 4-aminopyridineinduced epileptiform synchronization. Neurobiol. Dis., 109, 137–147 (2018). doi: 10.1016/j.nbd.2017.10.011
  55. Oyehaug L. Slow ion concentration oscillations and multiple states in neuron-glia interaction-insights gained from reduced mathematical models. Front. Netw. Physiol., 3, 1189118 (2023). doi: 10.3389/fnetp.2023.1189118
  56. El Houssaini K., Bernard C., and Jirsa V. K. The epileptor model: a systematic mathematical analysis linked to the dynamics of seizures, refractory status epilepticus, and depolarization block. eNeuro, 7 (2), ENEURO. 0485-18.2019 (2020). doi: 10.1523/ENEURO.0485-18.2019
  57. Goaillard J.-M. and Marder E. Ion channel degeneracy, variability, and covariation in neuron and circuit resilience. Annu. Rev. Neurosci., 44, 335–357 (2021). doi: 10.1146/annurev-neuro-092920-121538
  58. Edelman G. M. and Gally J. A. Degeneracy and complexity in biological systems. Proc. Natl. Acad. Sci. USA, 98, 13763–13768 (2001). doi: 10.1073/pnas.231499798
  59. Onasch S. and Gjorgjieva J. Circuit stability to perturbations reveals hidden variability in the balance of intrinsic and synaptic conductances. J. Neurosci., 40, 3186–3202 (2020). doi: 10.1523/JNEUROSCI.0985-19.2020
  60. Mishra P. and Narayanan R. Ion-channel degeneracy: Multiple ion channels heterogeneously regulate intrinsic physiology of rat hippocampal granule cells. Physiol. Rep., 9, e14963 (2021). doi: 10.14814/phy2.14963
  61. Pouille F., Marin-Burgin A., Adesnik H., Atallah B. V., and Scanziani M. Input normalization by global feedforward inhibition expands cortical dynamic range. Nat. Neurosci., 12, 1577–1585 (2009). doi: 10.1038/nn.2441
  62. Isaacson J. S. and Scanziani M. How inhibition shapes cortical activity. Neuron, 72, 231–243 (2011). doi: 10.1016/j.neuron.2011.09.027
  63. Kee T., Sanda P., Gupta N., Stopfer M., and BazhenovM. Feed-forward versus feedback inhibition in a basic olfactory circuit. PLoS Comput. Biol., 11, e1004531 (2015). doi: 10.1371/journal.pcbi.1004531
  64. Buzsaki G. and Watson B. O. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin. Neurosci., 14, 345–367 (2012). doi: 10.31887/DCNS.2012.14.4/gbuzsaki
  65. Bode H. W. Network Analysis and Feedback Amplifier Design (D. Van Nostrand Company, New York, NY, 1945).
  66. Andronov A. A. and Pontriagin L. S. Structurally stable systems. Doklady AN SSSR, 14, 247–250 (1937).
  67. Truxal J. Automatic Feedback Control System Synthesis (McGraw-Hill Comp. Inc., New York, 1955).
  68. Kitano H. Computational systems biology. Nature, 420, 206–210 (2002). doi: 10.1038/nature01254
  69. Whitacre J. M. Biological robustness: paradigms, mechanisms, and systems principles. Front. Genet., 3, 67 (2012). doi: 10.3389/fgene.2012.00067
  70. Stelling J., Sauer U., Szallasi Z., Doyle F. J., and Doyle J. Robustness of cellular functions. Cell, 118, 675–685 (2004). doi: 10.1016/j.cell.2004.09.008
  71. Kitano H. Towards a theory of biological robustness. Mol. Syst. Biol., 3, 137 (2007). doi: 10.1038/msb4100179
  72. Stober T. M., Batulin D., Triesch J., Narayanan R., and Jedlicka P. Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Commun. Biol., 6, 479 (2023). doi: 10.1038/s42003-023-04823-0
  73. Zang Y. and Marder E. Neuronal morphology enhances robustness to perturbations of channel densities. Proc. Natl. Acad. Sci. USA, 120, e2219049120 (2023). doi: 10.1073/pnas.2219049120
  74. Freeman M. Feedback control of intercellular signaling in development. Nature, 408, 313–319 (2000). doi: 10.1038/35042500
  75. Decroly O. and Goldbeter A. Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. Proc. Natl. Acad. Sci. USA, 79, 6917–6921 (1982). doi: 10.1073/pnas.79.22.6917
  76. Cinquin O. and Demongeot J. Roles of positive and negative feedback in biological systems. C. R. Biol., 325, 1085–1095 (2002). doi: 10.1016/s1631-0691(02)01533-0
  77. Mitrophanov A. Y. and Groisman E. A. Positive feedback in cellular control systems. Bioessays, 30, 542–555 (2008). doi: 10.1002/bies.20769
  78. Nguyen L. K., Munoz-Garcia J., Maccario H., Ciechanover A., Kolch W., and Kholodenko B. N. Switches, excitable responses and oscillations in the Ring1B/Bmi1 ubiquitination system. PLoS Comput. Biol., 7, e1002317 (2011). doi: 10.1371/journal.pcbi.1002317
  79. Turovsky E. A., Turovskaya M. V., and Dynnik V. V. Deregulation of Ca2+-signaling systems in white adipocytes, manifested as the loss of rhythmic activity, underlies the development of multiple hormonal resistance at obesity and type 2 diabetes. Int. J. Mol. Sci., 22, 5109 (2021). doi: 10.3390/ijms22105109
  80. Yamashita T., Horio Y., Yamada M., Takahashi N., Kondo C., and Kurachi Y. Competition between Mg2+ and spermine for a cloned IRK2 channel expressed in a human cell line. J. Physiol., 493 (Pt 1), 143–156 (1996). doi: 10.1113/jphysiol.1996.sp021370
  81. Ishihara K. and Ehara T. A repolarization-induced transient increase in the outward current of the inward rectifier K+ channel in guinea-pig cardiac myocytes. J. Physiol., 510 (Pt 3), 755–771 (1998). doi: 10.1111/j.1469-7793.1998.755bj.x
  82. Dhamoon A. S., Pandit S. V., Sarmast F., Parisian K. R., Guha P., Li Y., Bagwe S., Taffet S. M., and Anumonwo J. M. B. Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current. Circ. Res., 94, 1332–1339 (2004). doi: 10.1161/01.RES.0000128408.66946.67
  83. McCormick D. A. and Pape H. C. Properties of a hyperpolarizationactivated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol., 431, 291–318 (1990). doi: 10.1113/jphysiol.1990.sp018331
  84. Azene E. M., Xue T., and Li R. A. Molecular basis of the effect of potassium on heterologously expressed pacemaker (HCN) channels. J. Physiol., 547, 349–356 (2003). doi: 10.1113/jphysiol.2003.039768
  85. Nuss H. B., Marban E., and Johns D. C. Overexpression of a human potassium channel suppresses cardiac hyperexcitability in rabbit ventricular myocytes. J. Clin. Invest., 103, 889–896 (1999). doi: 10.1172/JCI5073
  86. Wengert E. R. and Patel M. K. The role of the persistent sodium current in epilepsy. Epilepsy Curr., 21, 40–47 (2021). doi: 10.1177/1535759720973978
  87. Thompson C. H., Hawkins N. A., Kearney J. A., and George A. L. CaMKII modulates sodium current in neurons from epileptic Scn2a mutant mice. Proc. Natl. Acad. Sci. USA, 114, 1696–1701 (2017). doi: 10.1073/pnas.1615774114
  88. Akram R., Anwar H., Javed M. S., Rasul A., Imran A., Malik S. A., Raza C., Khan I. U., Sajid F., Iman T., Sun T., Han H. S., and Hussain G. Axonal regeneration: underlying molecular mechanisms and potential therapeutic targets. Biomedicines, 10, 3186 (2022). doi: 10.3390/biomedicines10123186

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies