Effects of Caffeic Acid, Hispidin and the Discovered Stimulating Component on Luminescence of Mycelium and a Luminescent System of Basidiomycete Neonothopanus nambi

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In vivo studies have revealed that the addition of caffeic acid and a low-molecular-weight compound, a bioluminescence stimulator, discovered in our research, to the mycelium of the luminous fungus Neonothopanus nambi leads to a rapid and significant (by an order of magnitude or more) increase in the intensity of its light emission. It has been suggested that the observed effect of activation of fungal bioluminescence may be mediated by the oxidation of added substances by enzymes of the ligninolytic complex of basidiomycetes (in particular, peroxidases) with the emission of visible light quanta. Parallel in vivo experiments showed that additions of hispidin (a luciferin precursor in the luminous higher fungi) have no effect on the light emission intensity of the mycelium. At the same time, in vitro studies have reported that caffeic acid and the detected lowmolecular luminescence stimulator do not affect the level of light emission of the enzyme luminescent system isolated from the N. nambi mycelium in the presence of NADPH and significantly suppress the emission reaction of the system activated by NADPH and hispidin. A set of data collected demonstrate that different biochemical pathways present in the luminous higher fungi and different enzymes (or enzyme systems) and different substrates are involved in generation of visible light quanta.

About the authors

N. O Ronzhin

Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences

Email: roniol@mail.ru
Krasnoyarsk, Russia

E. D Posokhina

Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences

Krasnoyarsk, Russia

V. M Le

Kemerovo State University

Kemerovo, Russia

O. A Mogilnaya

Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences

Krasnoyarsk, Russia

Yu. V Zakharova

Kemerovo State Medical University

Kemerovo, Russia

A. S Sukhikh

Kemerovo State University

Kemerovo, Russia

V. S Bondar

Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences

Krasnoyarsk, Russia

References

  1. Chew A. L., Desjardin D. E., Tan Y. S., Musa M. Y., and Sabaratnam V. Bioluminescent fungi from Peninsular Malaysia – a taxonomic and phylogenetic overview. Fungal Divers., 70, 149–187 (2014). doi: 10.1007/s13225-014-0302-9
  2. Mihail J. D. Bioluminescence patterns among North American Armillaria species. Fungal Biol., 119, 528–537 (2015). doi: 10.1016/j.funbio.2015.02.004
  3. Desjardin D. E., Perry B. A., and Stevani C. V. New luminescent mycenoid fungi (Basidiomycota, Agaricales) from Sao Paulo State, Brazil. Mycologia, 108, 1165–1174 (2016). doi: 10.3852/16-077
  4. Oba Y. and Hosaka K. The luminous fungi of Japan. Journal of Fungi, 9 (6), 615 (2023). doi: 10.3390/jof9060615
  5. Shimomura O. Bioluminescence: chemical principles and methods (World Scientific Publishing Co. Pte. Ltd., Singapore, 2006).
  6. Desjardin D. E., Oliveira A. G., and Stevani C. V. Fungi bioluminescence revisited. Photochem. Photobiol. Sci., 7, 170–182 (2008). doi: 10.1039/B713328F
  7. Kobzeva T. V., Melnikov A. R., Karogodina T. Y., Zikirin S. B., Stass D. V., Molin Y. N., Rodicheva E. K., Medvedeva S. E., Puzyr A. P., Burov A. A., Bondar V. S., and Gitelson J. I. Stimulation of luminescence of mycelium of luminous fungus Neonothopanus nambi by ionizing radiation. Luminescence, 29 (7), 703–710 (2014). doi: 10.1002/bio.2656
  8. Brandl H. Luminescent wood in coal and ore mines – A historical review. Fungi Magazine, 4 (2), 5–9 (2011). doi: 10.5167/uzh-53631
  9. Vydryakova G. A., Van D. T., Shoukouhi P., Psurtseva N. V., and Bissett J. Intergenomic and intragenomic ITS sequence heterogeneity in Neonothopanus nambi (Agaricales) from Vietnam. Mycology, 3, 89–99 (2012). doi: 10.1080/21501203.2011.637085
  10. Oliveira A. G., Stevani C. V., Waldenmaier H. E., Viviani V., Emerson J. M., Loros J. J., and Dunlap J. C. Circadian control sheds light on fungal bioluminescence. Curr. Biol., 25 (7), 964–968 (2015). doi: 10.1016/j.cub.2015.02.021
  11. Desjardin D. E., Capelari M., and Stevani C. V. Bioluminescent Mycena species from Sao Paulo, Brazil. Mycologia, 99 (2), 317–331 (2007). doi: 10.3852/mycologia. 99.2.317
  12. Teranishi K. Localization of the bioluminescence system in the pileus of Mycena chlorophos. Luminescence, 31 (2), 594–599 (2016). doi: 10.1002/bio.3001
  13. Bondar V. S., Puzyr A. P., Purtov K. V., Petunin A. I., Burov A. E., Rodicheva E. K., Medvedeva S. E., Shpak B. A., Tyaglik A. B., Shimomura O., and Gitelzon I. I. Isolation of luminescence system from the luminescent fungus Neonothopanus nambi. Dokl. Biochem. Biophys., 455 (1), 56–58 (2014). doi: 10.1134/S1607672914020045
  14. Purtov K. V., Petushkov V. N., Baranov M. S., Mineev K. S., Rodionova N. S., Kaskova Z. M., Tsarkova A. S., Petunin A. I., Bondar V. S., Rodicheva E. K., Medvedeva S. E., Oba Y., Oba Y., Arseniev A. S., Lukyanov S., Gitelson J. I., and Yampolsky I. V. The Chemical Basis of Fungal Bioluminescence. Ang. Chem. Int. Ed., 54 (28), 8124–8128 (2015). doi: 10.1002/anie.201501779
  15. Oba Y., Suzuki Y., Martins G. N. R., Carvalho R. P., Pereira T. A., Waldenmaier H. E., Kanie S., Naito M., Oliveira A. G., Dorr F. A., Pinto E., Yampolsky I. V., and Stevani C. V. Identification of hispidin as a bioluminescent active compound and its recycling biosynthesis in the luminous fungal fruiting body. Photochem. Photobiol. Sci., 16 (9), 1435–1440 (2017). doi: 10.1039/c7pp00216e
  16. Kaskova Z. M., Dorr F. A., Petushkov V. N., Purtov K. V., Tsarkova A. S., Rodionova N. S., Mineev K. S., Guglya E. B., Kotlobay A., Baleeva N. S., Baranov M. S., Arseniev A. S., Gitelson J. I., Lukyanov S., Suzuki Y., Kanie S., Pinto E., Di Mascio P., Waldenmaier H. E., Pereira T. A., Carvalho R. P., Oliveira A. G., Oba Y., Bastos E. L., Stevani C. V., and Yampolsky I. V. Mechanism and color modulation of fungal bioluminescence. Sci. Adv., 3 (4), e1602847 (2017). doi: 10.1126/sciadv.1602847
  17. Puzyr A. P., Medvedeva S. E., Artemenko K. S., and Bondar V. S. Luminescence of cold extracts from mycelium of luminous basidiomycetes during long–term storage. Curr. Res. Env. Appl. Mycol., 7 (3), 227–235 (2017). doi: 10.5943/cream/7/3/9
  18. Kotlobay A. A., Sarkisyan K. S., Mokrushina Y. A., Marcet-Houben M., Serebrovskaya E. O., Markina N. M., Gonzalez Somermeyer L., Gorokhovatsky A. Y., Vvedensky A., Purtov K. V., Petushkov V. N., Rodionova N. S., Chepurnyh T. V., Fakhranurova L. I., Guglya E. B., Ziganshin R., Tsarkova A. S., Kaskova Z. M., Shender V., Abauov M., Abakumova T. O., Povolotskaya I. S., Eroshkin F. M., Zaraisky A. G., Mishin A. S., Dolgov S. V., MitiouchkinaT. Y., Kopantzev E. P., Waldenmaier H. E., Oliveira A. G., Oba Y., Barsova E., Bogdanova E. A., Gabaldon T., Stevani C. V., Lukyanov S., Smirnov I. V., Gitelson J. I., Kondrashov F. A., and Yampolsky I. V. Genetically encodable bioluminescent system from fungi. Proc. Natl. Acad. Sci. USA, 115 (50), 12728–12732 (2018). doi: 10.1073/pnas.1803615115
  19. Teranishi K. Bioluminescence and chemiluminescence abilities of trans-3-hydroxyhispidin on the luminous fungus Mycena chlorophos. Luminescence, 33 (7), 1235–1242 (2018). doi: 10.1002/bio.3540
  20. Puzyr A. P., Burov A. E., Medvedeva S. E., Burova O. G., and Bondar V. S. Two forms of substrate for the bioluminescent reaction in three species of basidiomycetes. Mycology, 10 (2), 84–91 (2019). doi: 10.1080/21501203.2019.1583688
  21. Garcia-Iriepa C., Losantos R., Fernandez-Martinez D., Sampedro D., and Navizet I. Fungal Light Emitter: Understanding Its Chemical Nature and pHDependent Emission in Water Solution. J. Org. Chem., 85 (8), 5503–5510 (2020). doi: 10.1021/acs.joc.0c00246
  22. Ronzhin N. O., Posokhina E. D., Mogilnaya O. A., and Bondar V. S. Finding the Light Emission Stimulator of Neonothopanus nambi Basidiomycete and Studying Its Properties. Dokl. Biochem. Biophys., 503, 80–84 (2022). doi: 10.1134/S1607672922020120
  23. Airth R. L. and McElroy W. D. Light emission from extracts of luminous fungi. J. Bacteriol., 77, 249–250 (1959). doi: 10.1128/jb.77.2.249-250.1959
  24. Airth R. L. and Foerster G. E. The isolation of catalytic components required for cell-free fungal bioluminescence. Arch. Biochem. Biophys., 97, 567–573 (1962). doi: 10.1016/0003-9861(62)90124-8
  25. Airth R. L. and Foerster G. E. Enzymes Associated with the Bioluminescence of Panus stipticus luminescens and Panus stipticus non-luminescens. J. Bacteriol., 88, 1372–1379 (1964). doi: 10.1128/jb.88.5.13721379.1964
  26. Oliveira A. G. and Stevani C. V. The enzymatic nature of fungal bioluminescence. Photochem. Photobiol. Sci., 8, 1416–1421 (2009). doi: 10.1039/B908982A
  27. Oliveira A. G., Desjardin D. E., Perry B. A., and Stevani C. V. Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages. Photochem. Photobiol. Sci., 11 (5), 848–852 (2012). doi: 10.1039/c2pp25032b
  28. Mogilnaya O. A., Ronzhin N. O., and Bondar V. S. Estimating levels of light emission and extracellular peroxidase activity of mycelium of luminous fungus Neonothopanus nambi treated with β-glucosidase. Curr. Res. Environ. Appl. Mycol., 8 (1), 75–85 (2018). doi: 10.5943/cream/8/1/6
  29. Bondar V. S., Shimomura O., and Gitelson J. I. Luminescence of Higher Mushrooms. J. Sib. Fed. Univ. Biology, 5 (4), 331–351 (2012). doi: 10.17516/1997-13890127
  30. Bondar V. S., Rodicheva E. K., Medvedeva S. E., Tyulkova N. A., Tyaglik A. B., Shpak B. A., and Gitelson J. I. On the mechanism of luminescence of the fungus Neonothopanus nambi. Dokl. Biochem. Biophys., 449, 80–83 (2013). doi: 10.1134/S1607672913020075
  31. Teranishi K. Second bioluminescence-activating component in the luminous fungus Mycena chlorophos. Luminescence, 32 (2), 182–189 (2017). doi: 10.1002/bio.3165
  32. Teranishi K. A combination of NADHP and hispidin is not essential for bioluminescence in luminous fungal living gills of Mycena chlorophos. Luminescence, 32 (5), 866–872 (2017). doi: 10.1002/bio.3265

Copyright (c) 2004 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies