Biophysical Methods for Testing Nanomaterials in Terms of Biomedical and Ecotoxicological Purposes Using Daphnia magna as a Model Organism

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents an overview of image visualization techniques and other biophysical approaches that demonstrate a validity of using higher invertebrate animals that include the crustacean Daphnia magna, a member of the subphylum Crustacea as a test model for biomedical and ecotoxicological studies. The authors describe the main characteristics of animals, such as a transparent body, small size, filter feeding mechanism, the presence of the formed organs, as well as a short life cycle, high fertility and sensitivity to toxicants, which allow the use of this test organism in experiments in vivo as an alternative model to warm-blooded animals. An analysis of the existing literature on the use of D. magna as a model for visualizing the accumulation and distribution of nanomaterials in the body, as well as for analyzing the mechanisms of cytotoxicity is carried out. Methods for fluorescence imaging, interference microscopy and spectrophotometry are described.

About the authors

N. B Savina

National Research Nuclear University “MEPhI”

Email: nsavina15@yandex.ru
Moscow, Russia

D. V Uskalova

Obninsk Institute for Nuclear Power Engineering – a Branch of National Research Nuclear University "MEPhI"

Obninsk, Russia

D. T Petrosova

Obninsk Institute for Nuclear Power Engineering – a Branch of National Research Nuclear University "MEPhI"

Obninsk, Russia

E. I Sarapultseva

National Research Nuclear University “MEPhI”; Obninsk Institute for Nuclear Power Engineering – a Branch of National Research Nuclear University "MEPhI"

Moscow, Russia; Obninsk, Russia

References

  1. Kus-Liśkiewicz M., Fickers P., and Ben Tahar I. Biocompatibility and cytotoxicity of gold nanoparticles: recent advances in methodologies and regulations. Int. J. Mol. Sci., 22 (20), 10952 (2021). doi: 10.3390/ijms222010952
  2. Yun X., Zuyong X., and Jianghong R. Semiconductor quantum dots for biosensing and in vivo imaging. IEEE Trans. NanoBiosci., 8 (1), 4–12 (2009). doi: 10.1109/TNB.2009.2017321
  3. Naumova O. V., Generalov V. M., Zaitseva E. G., Latyshev A. V., Pyankov S. A., Kolosova I. V., Ananko G. G., Agafonov A. P., Gavrilova E. V., Maksyutov R. A., and Safatov A. S. Biosensors based on SOI nanowire transistors for biomedicine and virusology. Russ. Microelectron., 50 (3), 137–145 (2021). doi: 10.1134/S1063739721030069
  4. Kim C. S., Li X., Jiang Y., Yan B., Tonga G. Y., Ray M., Solfiell D. J., and Rotello V. M. Cellular imaging of endosome entrapped small gold nanoparticles. MethodsX, 2, 306–315 (2015). doi: 10.1016/j.mex.2015.06.001
  5. OECD, 2011. Test Guideline No. 202: Daphnia sp. Acute immobilization test (Organization for Economic Cooperation and Development, Paris, France).
  6. OECD, 2012. Test No. 211: Daphnia magna Reproduction Test, OECD Guidelines for the Testing of 510 Chemicals, Section 2 (OECD Publishing, Paris).
  7. Ebert D. Ecology, epidemiology, and evolution of parasitism in Daphnia (National Center for Biotechnology Information (US), Bethesda (MD), 2005). Chapter 2, Introduction to Daphnia Biology. Электронный ресурс: http://www.ncbi.nlm.nih.gov/ books/NBK2042/ (дата доступа 10.10.2023).
  8. Smirnov N. Physiology of the Cladocera (Elsevier, Boston, 2017).
  9. Fuller N., Lerebours A., Smith J., and Ford A. T. The biological effects of ionising radiation on Crustaceans: A revie. Aquatic Toxicol., 167, 55–67 (2015). doi: 10.1016/j.aquatox.2015.07.013ï
  10. Сарапульцева Е. И. Биологические эффекты радиационного воздействия у низших ракообразных Daphnia magna. Аналитический обзор. Радиац. биология. Радиоэкология, 57 (4), 414–428 (2017). doi: 10.7868/S0869803117040075
  11. Nkoom М., Lu G., Liu J., Dong H., and Yang H. Bioconcentration, behavioral, and biochemical effects of the non-steroidal anti-inflammatory drug diclofenac in Daphnia magna. Environ. Sci. & Pollution Res., 26 (6), 5704–5712 (2019). doi: 10.1007/s11356-018-04072-3
  12. Bownik A. Physiological endpoints in daphnid acute toxicity tests. Sci. Total Environ., 700, 134400 (2019). doi: 10.1016/j.scitotenv.2019.134400
  13. ПНД Ф Т 14.1:2:4.12-06; Т 16.1:2.3:3.9-06. Токсикологические методы анализа. Методика определения острой токсичности питьевой воды, пресных природных и сточных вод, водных вытяжек из почвы, осадков сточных вод и отходов по смертности дафний Daphnia magna Straus (ФБУ «ФЦАО», М., 2006, 2011).
  14. Приказ Росрыболовства от 04.08.2009 N 695. «Об утверждении Методических указаний по разработке нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения».
  15. Fan W., Shi Z., Yang X., Cui M., Wang X., Zhang D., Liu H., and Guo L. Bioaccumulation and biomarker responses of cubic and octahedral Cu2O micro/nanocrystals in Daphnia magna. Water Res., 46 (18), 5981–5988 (2012). doi: 10.1016/j.watres.2012.08.019
  16. Nogueira D. J., Vaz V. P., Neto O. S., Silva M. L. N., Simioni C., Ouriques L. C., Vicentini D. S., and Matias W. G. Crystalline phase-dependent toxicity of aluminum oxide nanoparticles toward Daphnia magna and ecological risk assessment. Environ. Res., 182, 108987 (2020). doi: 10.1016/j.envres.2019.108987
  17. Ates M., Danabas D., Ertit Tastan B., Unal I., Cicek Cimen I. C., Aksu O., Kutlu B., and Arslan Z. Assessment of oxidative stress on Artemia salina and Daphnia magna after exposure to Zn and ZnO nanoparticles, Bull. Environ. Contamination Toxicol., 104 (2), 206–214 (2020). doi: 10.1007/s00128-019-02751-6
  18. Dominguez G. A., Lohse S. E., Torelli M. D., Murphy C. J., Hamers R. J., Orr G., and Klaper R. D. Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna, Aquatic Toxicol., 162, 1‒9 (2015). doi: 10.1016/j.aquatox.2015.02.015
  19. Prinz C. N. Interactions of nanowires with cells and tissue, in Technical Digest of the Int. Electron Devices Meet. (2018), pp. 26 3.1-26.3.4. doi: 10.1109/IEDM.2017.8268463
  20. Mattsson K., Adolfsson K., Ekvall M. T., Borgström M. T., Linse S., Hansson L.-A., Cedervall T., and Prinz C. N. Translocation of 40 nm diameter nanowires through the intestinal epithelium of Daphnia magna. Nanotoxicology 10 (8), 1160–1167 (2016). doi: 10.1080/17435390.2016.1189615
  21. Feswick A., Griffitt R. J., Siebein K., and Barber D. S. Uptake, retention and internalization of quantum dots in Daphnia is influenced by particle surface functionalization. Aquatic Toxicol., 130, 210–218 (2013). doi: 10.1016/j.aquatox.2013.01.002
  22. Kwon D., Kim M. J., Park C., Park J., Choi K., and YoonT. H. In vivo biodegradation of colloidal quantum dots by a freshwater invertebrate, Daphnia magna. Aquatic Toxicol., 114, 217–222 (2012). doi: 10.1016/j.aquatox.2012.02.033
  23. Jackson B. P., Pace H. E., Lanzirotti A., Smith R., and Ranville J. F. Synchrotron X-ray 2D and 3D elemental imaging of CdSe/ZnS quantum dot nanoparticles in Daphnia magna. Anal. Bioanal. Chem., 394, 911–917 (2009). doi: 10.1007/s00216-009-2768-y
  24. Galdiero E., Falanga A., Siciliano A., Maselli V., Guida M., Carotenuto R., Tussellino M., Lombardi L., Benvenuto G., and Galdiero S. Daphnia magna and Xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625. Int. J. Nanomed., 12, 2717–2731 (2017). doi: 10.2147/IJN.S127226
  25. Yang M., Fan J., Du J., Long S., Wang J., and Peng X. Imaging of formaldehyde in live cells and Daphnia magna via Aza-Cope reaction utilizing fluorescence probe with large stokes shifts. Front. Chem., 6 (2018). doi: 10.3389/fchem.2018.00488
  26. Zhang Z., Fan J., Zhao Y., Kang Y., Du J., and Peng X. Mitochondria-accessing ratiometric fluorescent probe for imaging endogenous superoxide anion in live cells and Daphnia magna, ACS Sensors, 3 (3), 735–741 (2018). doi: 10.1021/acssensors.8b00082
  27. Li H., Zhou X., Fan J., Long S., Du J., Wang J., and Peng X. Fluorescence imaging of SO2 derivatives in Daphnia magna with a mitochondria-targeted two-photon ratiometric fluorescent probe. Sensors and Actuators B: Chemical, 154, 709–718 (2018). doi: 10.1016/j.snb.2017.07.082
  28. Khalaf E. M., Mohammadi M. J., Sulistiyani S., Ramírez-Coronel A. A., Kiani F., Jalil A. T., Almulla A. F., Asban P., Farhadi M., and Derikondi M. Effects of sulfur dioxide inhalation on human health: a review. Rev. Environ. Health (2022). doi: 10.1515/reveh-2022-0237
  29. Singhal R., Carrigan J. B., Wei W., Taniere P., Hejmadi R., Forde C., Ludwig C., Griffiths R. L., Johnson P. J., Tucker O., Alderson D., Günther U. L., and Ward D. G. MALDI profiles of proteins and lipids for the rapid characterisation of upper GI-tract cancers. J. Proteomics, 80, 207–215 (2015). doi: 10.1016/j.jprot.2013.01.016
  30. Ščupáková K., Soons Z., Ertaylan G., Pierzchalski K. A., Eijkel G. B., Ellis S. R., Greve J. W., Driessen A., Verheij J., De Kok T. M., Olde Damink S. W. M., Rensen S. S., and Heeren R. M. A. Spatial systems lipidomics reveals nonalcoholic fatty liver disease heterogeneity. Anal. Chem., 90 (8), 5130–5138 (2018). doi: 10.1021/acs.analchem.7b05215
  31. Schirmer E., Ritschar S., Ochs M., Laforsch C., Schuster S., and Römpp A. MALDI mass-spectrometry imaging workflow for the aquatic model organisms Danio rerio and Daphnia magna. Sci. Reports, 12 (1), 72–88 (2022). doi: 10.1038/s41598-022-09659-y
  32. Seyoum A., Pradhan A., Jass J., and Olsson P.-E. Perfluorinated alkyl substances impede growth, reproduction, lipid metabolism and lifespan in Daphnia magna. Sci. Total Environ., 737, 139682 (2020). doi: 10.1016/j.scitotenv.2020.139682
  33. Smith M. J., Weber R. J. M., and Viant M. R. Spatially mapping the baseline and bisphenol-a exposed Daphnia magna lipidome using desorption electrospray ionization—mass spectrometry. Metabolites, 12 (1), 33 (2022). doi: 10.3390/metabo12010033
  34. Takáts Z., Wiseman J. M., Gologan B., and Cooks R. G. Mass-spectrometry sampling under ambient conditions with desorption electrospray ionization. Science, 306 (5695), 471–473 (2004). doi: 10.1126/science.1104404
  35. Каленков С. Г., Каленков Г. С. и Штанько А. Е. Пространственно-спектральная цифровая голография микрообъектов в низкокогерентном свете. Радиотехника и электроника, 58 (12), 1243 (2013). doi: 10.7868/S0033849413120097
  36. Сарапульцева Е. И., Каленков Г. С., Заалишвили Н. Ю., Ускалова Д. В. и Устенко К. В. Новый подход к оценке радиоэкологических последствий облучения, в кн. Будущее атомной энергетики – AtomFuture 2019 (Обнинский институт атомной энергетики – филиал Национального исследовательского ядерного университета «МИФИ», Обнинск, 2020), сс. 46–47.
  37. Сарапульцева Е. И., Морозова А. О., Колесникова Н. И., Савина Н. Б., Ускалова Д. В. и Устенко К. В. Анализ сердечного ритма у модельного тест-организма Daphnia magna в качестве нового подхода к оценке радиоэкологических последствий облучения. Изв. ВУЗов: ядерная энергетика, 2, 146–155 (2020). doi: 10.26583/npe.2020.2.13
  38. Paul R. J., Colmorgen M., Hüller T., Tyroller F., and Zinkler D. Circulation and respiratory control in millimetresized animals (Daphnia magna, Folsomia candida) studied by optical methods. J. Comp. Physiol. B: Biochemical, Systemic, and Environmental Physiology, 167 (6), 399–408 (1997). doi: 10.1007/s003600050089
  39. Barata C., Varo I., Navarro J. C., Arun S., and Porte C. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp. Biochem. Physiol. C: Toxicology & Pharmacology 140 (2), 175–186 (2005). doi: 10.1016/j.cca.2005.01.013
  40. Nikš M. and Otto M. Towards an optimized MTT-assay. J. Comp. Physiol. B: Biochemical, Systemic, and Environmental Physiology, 130 (1), 149–151 (1990). doi: 10.1007/s003600050089
  41. Сарапульцева Е. И., Рябченко Н. И., Иголкина Ю. В. и Иванник Б. П. Использование метилтетразолий бромида (МТТ) для биотестирования низкодозового радиационного воздействия на организменном уровне. Радиац. биология. Радиоэкология, 53 (6), 634–638 (2013). doi: 10.7868/S0869803113060131 42. Савина Н. Б., Ускалова Д. В. и Сарапульцева Е. И. Использование МТТ-теста для изучения отдалeнных эффектов острого γ-облучения у ракообразных Daphnia magna. Радиация и риск, 27 (1), 86–94 (2018). doi: 10.21870/0131-3878-2018-27-1-86-93
  42. Савина Н. Б., Ускалова Д. В. и Сарапульцева Е. И. Использование МТТ-теста для изучения отдалeнных эффектов острого γ-облучения у ракообразных Daphnia magna. Радиация и риск, 27 (1), 86–94 (2018). doi: 10.21870/0131-3878-2018-27-1-86-93

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies