Combination of Electrochemical and Ultrasonic Treatments for Purification of Water Contaminated with Pathogenic Bacteria: a Сase Study of Escherichia coli

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Combined effects of electrolysis and ultrasound on the population of E. coli bacteria in aqueous solution of sodium sulfate were investigated. The kinetics of bacteria inactivation was determined employing these water purification techniques. It has been shown that the combination of ultrasonic and electrochemical treatments of aqueous solution significantly increases the rate of bacterial inactivation. It has been suggested that hydroxyl radicals formed as a result of the reaction occurred after treatment of aqueous solution by employing a combination of electrolysis and ultrasound are responsible for the death of bacteria. A correlation between the rate of hydroxyl radical formation and the inactivation rate of bacteria has been obtained.

About the authors

S. B Bibikov

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

A. I Sergeev

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

I. I Barashkova

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: irbarashk@rambler.ru
Moscow, Russia

M. V Motyakin

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

References

  1. Spellman F. R. Handbook of water and wastewater treatment plant operations (CRC Press, Boca Raton, 2013).
  2. Sperling M. V. Biological waste treatment series. V. 2. Basic principles of wastewater treatment (IWA Publishing, London, 2007).
  3. Ahuja S. Overview of advances in water purification techniques. In Advances in water purification technique, ed. by S. Ahuja (Elsevier Press, 2019), pp. 1–15.
  4. Edberg S. C., Rice E. W., Karlin R. J. and Allen M. J. Escherichia coli: the best biological drinking water indicator for public health protection. J. Appl. Microbiol., 88, 106–116 (2000). doi: 10.1111/j.1365-2672.2000.tb05338.x
  5. Carcinogens from water disinfection, Ed. by S. Sciacca, G. O. Conti, M. Fiore, R. Fallico, and M. Ferrante (Nova Science Publishers, NY, 2011).
  6. Al-Holy M. A. and Rasco B. A. The bactericidal activity of acidic electrolyzed oxidizing water against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on raw fish, chicken and beef surfaces. Food Control, 54, 317–321 (2015). doi: 10.1016/j.foodcont.2015.02.017
  7. Wolf Y., Oster S., Shuliakevich A., Brückner I., Dolny R., Linnemann V., Pinnekamp J., Hollert H. and Schiwy S. Improvement of wastewater and water quality via a full-scale ozonation plant? – A comprehensive analysis of the endocrine potential using effect-based methods. Sci. Total Environ., 803 (12) 149756 (2021). doi: 10.1016/j.scitotenv.2021.149756
  8. Brisbin R., Zhou J., Bond T., Voss L., Simon A. J., Baxter R., and Chang A. S. P. Plasmonics-Enhanced UV Photocatalytic Water Purification. J. Phys. Chem. C, 125, 9730–9735 (2021). doi: 10.1021/acs.jpcc.1c00613
  9. Wang J., Wang Z., Vieira C. L. Z., Wolfson J. M., Pingtian G., and Huang S. Review on the treatment of organic pollutants in water by ultrasonic technology. Ultrason. Sonochem., 55, 273–278 (2019). doi: 10.1016/j.ultsonch.2019.01.017
  10. Swanckaert B., Geltmeyer J., Rabaey K., De Buysser K., and Bonin L. A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste)water treatment. Separation and Purification Technology, 287, 120529 (2022). doi: 10.1016/j.seppur.2022.120529
  11. Chaplin B. P. The prospect of electrochemical technologies advancing worldwide water treatment. Acc. Chem. Res., 52 (3), 596–604 (2019). doi: 10.1021/acs.accounts.8b00611
  12. Mousset E., Trellu C., Olvera-Vargas H., Pechaud Y., Fourcade F. and Oturan M. A. Electrochemical technologies coupled with biological treatments. Curr. Opin. Electrochem., 26, 100668 (2020). DOI: 10.1016/ j.coelec.2020.100668
  13. Li X. Y., Diao H. F., Fan F. X. J., Gu J. D., Ding F. and Tong A. S. F. Electrochemical wasterwater disinfection: identification of its principal germicidal actions. J. Env. Eng., 130 (10), 1217–1221 (2004). DOI: 10.1061/ (asce)0733-9372(2001)130:10(1217)
  14. Patermarakis G. and Fountoukidis E. Disinfection of water by electrochemical treatment, Water Res., 24, 1491–1496 (1990). doi: 10.1016/0043-1354(90)90083-I
  15. Barashkov N. N., Eisenberg D., Eisenberg S., Shegebaeva G. S., Irgibaeva I. S. and Barashkova I. I. Electrochemical chlorine-free AC disinfection of water contaminated with Salmonella typhimurium bacteria. Russ. J. Electrochem., 46 (3), 306–311 (2010). doi: 10.1134/S1023193510030079
  16. Halpin R. M., Duffy L., Cregenzan-Alberti O., Lyng J. G., and Noci F. The effect of non-thermal processing technologies on microbial inactivation: An investigation into sub-lethal injury of Escherichia coli and Pseudomonas fluorescens. Food Control, 41, 106–115 (2014). doi: 10.1016/j.foodcont.2014.01.011
  17. Gao S., Lewis G. D., Ashokkumar M., and Hemar Y. Inactivation of microorganisms by low-frequency highpower ultrasound: 2. A simple model for the inactivation mechanism. Ultrason. Sonochem., 21, 454–460 (2014). doi: 10.1016/j.ultsonch.2013.06.007
  18. Al-Juboori R. A. and Yusaf T. Improving the performance of ultrasonic horn reactor for deactivating microorganisms in water. IOP Conf. Series: Mater. Sci. Engineer., 36 (1), 012037 (2012). doi: 10.1088/1757899X/36/1/012037
  19. Lee Y., Zhou B., Liang W., Feng H., and Martin S. E. Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: Microbial responses and kinetics modeling. J. Food Engineer., 93, 352–364 (2009). doi: 10.1016/j.jfoodeng.2009.01.037
  20. Kadkhodaee R. and Povey M. J. Ultrasonic inactivation of Bacillus alpha-amylase. I. Effect of gas content and emitting face of probe. Ultrason. Sonochem., 15, 133–142 (2008). doi: 10.1016/j.apenergy.2013.08.085
  21. Drakopoulou S., Terzakis S., Fountoulakis M. S., Mantzavinos D., and Manios T. Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wasterwater. Ultrason. Sonochem., 16, 629–634 (2009). doi: 10.1016/j.ultsonch.2008.11.011
  22. Ashokkumar M. The characterization of acoustic cavitation bubbles – an overview. Ultrason. Sonochem., 18, 864–872 (2011). doi: 10.1016/j.ultsonch.2010.11.016
  23. Gong C., Jiang J., and Tian D. L. Ultrasonic application to boost hydroxyl radical formation during Fenton oxidation and release organic matter from sludge. Sci. Reports, 5, 1–8 (2015). doi: 10.1038/srep11419
  24. Kasai P. H. and McLeod D. Detection by spin trapping of hydrogen and hydroxyl radicals generated during electrolysis of water. J. Phys. Chem., 82, 619–621 (1978). doi: 10.1021/j100494a024
  25. Sergeev A., Motyakin M., Barashkova I., Zaborova V., Krasulya O., and Yusof N. S. M. EPR and NMR study of molecular components mobility and organization in goat milk under ultrasound treatment. Ultrason. Sonochem., 77, 105673 (2021). doi: 10.1016/j.ultsonch.2021.105673
  26. Zhang B.-T., Zhao L.-X., and Lin J.-M. Study on superoxide and hydroxyl radicals generated in indirect electrochemical oxidation by chemiluminescence and UV-Visible spectra. J. Environ. Sci., 20, 1006–1011 (2008). doi: 10.1016/S1001-0742(08)62200-7
  27. Comninellis C. H. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta, 39 (11–12) 1857–1862 (1994). doi: 10.1016/0013-4686(94)85175-1

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies