Hydrogen Sulfide Led to a Modification in the Structure of Mitochondrial Membrane of Epicotyls of Pea Seedlings Pisum sativum L. under Water Deficit Conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The present study has been carried out to investigate changes in the structural characteristics of mitochondrial membranes isolated from epicotyls of pea seedlings of variety Nemchinovskiy 100 under the influence of different concentrations of NaHS. It was shown that treatment of pea seeds with NaHS at doses of 2∙10–4 and 5∙10–6 M resulted in the shift of thermally-induced structural transitions toward the region of lower temperatures and an increase in the microviscosity of both lipid and preprotein regions of mitochondrial membrane due to a decrease in the volume of their crystallization matrix. The presence of exogenous NaHS or endogenous hydrogen sulfide can enhance the activity of antioxidant defense enzymes and lead to accumulation of osmolytes. As a result, the microviscosity of the lipid bilayer could increase. To test this hypothesis, the effect of resveratrol, an antioxidant agent, on microviscosity of the lipid bilayer of epicotyl mitochondria of pea seedlings was investigated using normal pea seeds treated with resveratrol with or without pre-treatment with NaHS. Additionally, bioenergetic characteristics of mitochondria were studied. The results obtained confirmed that hydrogen sulfide has an effect on the structural characteristics of mitochondrial membranes through the activation of antioxidant enzymes and accumulation of osmolytes.

About the authors

N. Yu Gerasimov

N.M.Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: n.yu.gerasimov@gmail.com
Moscow, Russia

O. V Nevrova

N.M.Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

I. V Zhigacheva

N.M.Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

I. P Generozova

N.M.Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

A. N Goloshchapov

N.M.Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

References

  1. Nxele X., Klein A., and Ndimba B. K. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. S. Afr. J. Bot., 108, 261–266 (2017). doi: 10.1016/j.sajb.2016.11.003
  2. Bamagoos A., Alharby H., and Fahad S. Biochar coupling with phosphorus fertilization modifies antioxidant activity, osmolyte accumulation and reactive oxygen species synthesis in the leaves and xylem sap of rice cultivars under high-temperature stress. Physiol. Mol. Biol. Plants, 27 (9), 2083–2100 (2021). DOI: 10.1007%2Fs12298-021-01062-7
  3. Hetherington A. M., Hunter M. I. S., and Crawford R. M. M. Contrasting effects of anoxia on rhizome lipids in Iris species. Phytochemistry, 21 (6), 1275–1278 (1982). doi: 10.1016/0031-9422(82)80125-8
  4. Abbas S. R., Ahmad S. D., Sabir S. M., and Shah A.H. Detection of drought tolerant sugarcane genotypes (Saccharum officinarum) using lipid peroxidation, antioxidant activity, glycine-betaine and proline contents. J. Soil Sci. Plant Nutr., 14 (1), 233–243 (2014). doi: 10.4067/S0718-95162014005000019
  5. Ma D., Ding H., Wang C., Qin H., Han Q., Hou J., Lu H., Xie Y., and Guo T. Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS One, 11 (9), e0163082 (2016). doi: 10.1371/journal.pone.0163082
  6. Zhou Z.-H., Wang Y., Ye X.-Y., and Li Z.-G. Signaling molecule hydrogen sulfide improves seed germination and seedling growth of maize (Zea mays L.) under high temperature by inducing antioxidant system and osmolyte biosynthesis. Front. Plant Sci., 9, 1288 (2018). doi: 10.3389/fpls.2018.01288
  7. Cheng T., Shi J., Dong Y., Ma Y., Peng Y., Hu X., and Chen J. Hydrogen sulfide enhances poplar tolerance to high-temperature stress by increasing S-nitrosoglutathione reductase (GSNOR) activity and reducing reactive oxygen/nitrogen damage. Plant Growth Reg., 84 (1), 11–23 (2018). DOI: 10. 1007/s10725-017-0316-x
  8. Liu Z., Li Y., Cao C., Liang S., Ma Y., Liu X., and Pei Y. The role of H2S in low temperature-induced cucurbitacin C increases in cucumber. Plant Mol. Biol., 99 (6), 535–544 (2019). doi: 10.1007/s11103-019-00834-w
  9. Zhu C. Q., Zhang J. H., Sun L.M., Zhu L. F., Abliz B., Hu W. J., Zhong C., Bai Z. G., Sajid H., Cao X. C., and Jin Q. Y. Hydrogen sulfide alleviates aluminum toxicity via decreasing apoplast and symplast Al contents in rice. Front. Plant Sci., 9, 294 (2018). doi: 10.3389/fpls.2018.00294
  10. Tang X., An B., Cao D., Xu R., Wang S., Zhang Z., Liu X., and Sun X. Improving photosynthetic capacity, alleviating photosynthetic inhibition and oxidative stress under low temperature stress with exogenous hydrogen sulfide in blueberry seedlings. Front. Plant Sci., 11, 108 (2020). doi: 10.3389/fpls.2020.00108
  11. Bindu D. P., Solomon H. S., and Khosrow K. Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol., 38, 101772 (2021). doi: 10.1016/j.redox.2020.101772
  12. Koch M. S. and Erskine J. M. Sulfide as a phytotoxin to the tropical seagrass Thalassia testudinum: interactions with light, salinity and temperature. J. Ex. Mar. Biol. Ecol., 266 (1), 81–95 (2001). doi: 10.1016/S0022-0981(01)00339-2
  13. Koch M. S., Mendelssohn I. A., and McKee K. L. Mechanism for the hydrogen sulphide-induced growth limitation in wetland macrophytes. Limnol. and Oceanogr., 35 (2), 399–408 (1990). doi: 10.4319/lo.1990.35.2.0399
  14. Li Z. G. Hydrogen sulfide: a multifunctional gaseous molecule in plants. Rus. J. Plant Physiol., 60 (6), 733– 740 (2013). doi: 10.1134/S1021443713060058
  15. Hancock J. T. and Whiteman M. Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species. Ann. N. Y. Acad. Sci., 1365 (1), 5–14 (2016). doi: 10.1111/nyas.12733
  16. Huo J., Huang D., Zhang J., Fang, H., Wang B., Wang C., and Liao W. Hydrogen sulfide: a gaseous molecule in postharvest freshness. Front. Plant Sci., 9, 1172 (2018). doi: 10.3389/fpls.2018.01172
  17. Kim J. Y., Lee H. J., Jung H. J., Maruyama K., Suzuki N., and Kang H. Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions. Planta, 232 (6), 1447–1454 (2010). doi: 10.1007/s00425-010-1267-x
  18. Sadeghian S. Y. and Yavari N. Effect of water‐deficit stress on germination and early seedling growth in sugar beet. J. Agron. Crop Sci., 190 (2), 138–144 (2004). doi: 10.1111/j.1439-037X.2004.00087.x
  19. Chen Z., Huang Y., Yang W., Chang G., Li P., Wei J., Yuan X., Huang J., and Hu X. The hydrogen sulfide signal enhances seed germination tolerance to high temperatures by retaining nuclear COP1 for HY5 degradation. Plant Sci., 285, 34–43 (2019). doi: 10.1016/j.plantsci.2019.04.024
  20. Zhao M., Liu Q., Zhang Y., Yang N., Wu G., Li Q., and Wang W. Alleviation of osmotic stress by H2S is related to regulated PLDα1 and suppressed ROS in Arabidopsis thaliana. J. Plant Res., 133 (3), 393–407 (2020). doi: 10.1007/s10265-020-01182-3
  21. Christou A., Filippou P., Manganaris G. A., and Fotopoulos V. Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol., 14 (1), 42 (2014). doi: 10.1186/1471-2229-14-42
  22. Hu L. Y., Hu S.-L., Wu J, Li Y.-H., Zheng J.-L., Wei Z.-J., Liu J., Wang H.-L., Liu Y.-S., and Zhang H. Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits. J. Agric. Food Chem., 60 (35), 8684–8693 (2012). doi: 10.1021/jf300728h
  23. Li S.-P., Hu K.-D., Hu L.-Y., Li Y.-H., Jiang A.-M., Xiao F., Han Y., Liu Y.-S., and Zhang H. Hydrogen sulfide alleviates postharvest senescence of broccoli by modulating antioxidant defense and senescence-related gene expression. J. Agric. Food Chem., 62 (5), 1119–1129 (2014). doi: 10.1021/jf4047122
  24. Yao G.-F., Wei Z.-Z., Li T.-T., Tang J., Huang Z.-Q., Yang F., Li Y.-H., Han Z., Hu F., Hu L.-Y., Hu K.-D., and Zhang H. Modulation of enhanced antioxidant activity by hydrogen sulfide antagonization of ethylene in tomato fruit ripening. J. Agric. Food Chem., 66 (40), 10380–10387 (2018). doi: 10.1021/acs.jafc.8b03951
  25. Joshi N. C., Yadav D., Ratneret K., Kamara I., AvivSharon E., Irihimovitch V., and Charuvi D. Sodium hydrosulfide priming improves the response of photosynthesis to overnight frost and day high light in avocado (Persea americana Mill, cv.‘Hass’). Physiol. Plant., 168 (2), 394–405 (2020). doi: 10.1111/ppl.13023
  26. Ni Z.-J., Hu K.-D., Song C.-B., Ma R.-H., Li Z.-R., Zheng J.-L., Fu L.-H., Wei Z.-J., and Zhang H. Hydrogen sulfide alleviates postharvest senescence of grape by modulating the antioxidant defenses. Oxid. Med. Cell. Longev., 2016, 4715651 (2016). doi: 10.1155/2016/4715651
  27. Ge Y., Hu K.-D., Wang S.-S., Hu L.-Y., Chen X.-Y., Li Y.-H., Yang Y., Yang F., and Zhang H. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene. PLoS One, 12 (6), e0180113 (2017). doi: 10.1371/journal.pone.0180113
  28. Liu D., Li J., Li Z., and Pei Y. Hydrogen sulfide inhibits ethylene-induced petiole abscission in tomato (Solanum lycopersicum L.). Hort. Res., 7 (1), 14 (2020). doi: 10.1038/s41438-019-0237-0
  29. Бинюков В. И., Борунова С. Ф., Гольдфельд М. Г., Жукова И. Г., Кудлай Д. Г., Кузнецов А. Н., Шапиро А. Б. и Островский Д. Н. Исследование структурных переходов в биологических мембранах методом спинового зонда; температурные изменения мембран бактерий. Биохимия, 36 (6), 1149–1155 (1971).
  30. Вассерман А. М., Бучаченко А. Л., Коварский А. Л. и Нейман М. Б. Исследование молекулярных движений в полимерах методом парамагнитного зонда. Высокомолекуляр. соединения, 10А (8), 1930–1936 (1968).
  31. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193 (1), 265–275 (1951).
  32. Комов В. П. и Шведова В. Н. Биохимия: учебник для вузов (Юрайт, М., 2021).
  33. Гендель Л. Я., Гольдфельд М. Г., Кольтовеp В. К., Розанцев Э. Г. и Сускина В. И. Исследование конформационных переходов в биомембранах методом слабо связанного парамагнитного зонда. Биофизика, 13 (6), 1114–1116 (1968).
  34. Герасимов Н. Ю., Неврова О. В., Жигачева И. В., Генерозова И. П. и Голощапов А. Н. Действие антиоксидантной системы «ресвератрол – серанитрозильный комплекс железа натрий-μ2-дитиосульфатотетранитрозилдиферрат» тетрагидрат на митохондрии эпикотилей проростков гороха in vitro». Биофизика, 68 (4), 653–659 (2023). doi: 10.31857/S000630292304004X
  35. Миль Е. М., Бинюков В. И., Жигачева И. В., Албантова А. А., Фаттахов С. Г., Коновалов А. И., Заиков Г. Е. и Тунакова Ю. А. Изучение влияния стрессовых воздействий и регулятора роста растений мелафена на митохондрии проростков гороха методом АСМ. Вестн. КНИТУ, 16 (13), 141–144 (2013).
  36. Конов К. Б. Исследование методами ЭПР воздействия криопротекторов сахарозы, трегалозы, глицерина и сорбита на структуру и динамику модельной липидной мембраны. Дис. к-та физ.-мат. наук (Каз. физ.-тех. инст. им. Е. К. Завойского, Казань, 2016).
  37. Ganong W. F. Review of Medical Physiology (McGrawHill Med., Minneapolis, 2005).
  38. Коваль И. В. Тиолы как синтоны. Rus. Chem. Rev., 62 (8), 769–786 (1993). DOI: 10.1070/ RC1993v062n08ABEH000046

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies