Electrogenesis in the Root Environment of Various Lettuce Varieties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bioelectrochemical systems based on electroactive processes in the root environment of plants are a promising direction for the combined production of green electricity and plant products. This work aimed to investigate the dynamics of the potential differences formation in the root environment, diffuse reflectance indices of leaves, fluorescence parameters, morphometric and biochemical characteristics of the lettuce varieties (Chinese curly, Chinese red-green, Ballet, Cockarde, Mercury, Dubrava, Robin) and Solos F1 hybrid. A maximum potential difference of 430 mV was observed for the Mercury variety, and a minimum potential difference of 352 mV was determined for the Chinese curly variety. Analysis of measurements taken including morphometric, biochemical and photosynthetic characteristics in addition to electrical parameters revealed that the Ballet lettuce variety showed the best parameters among other lettuce varieties under study. It is evident based on the data obtained that it is possible to create agrophytocenoses that include plants capable of high and stable electricity generation along with high productivity and good quality of the resulting plant products due to the effective absorption and conversion of light energy.

About the authors

T. E Kuleshova

Agrophysical Research Institute

Email: www.piter.ru@bk.ru
Grazhdanskiy prosp. 14, Saint-Petersburg, 195220 Russia

Z. A Gasieva

Agrophysical Research Institute

Grazhdanskiy prosp. 14, Saint-Petersburg, 195220 Russia

D. V Rusakov

Agrophysical Research Institute

Grazhdanskiy prosp. 14, Saint-Petersburg, 195220 Russia

A. S Galushko

Agrophysical Research Institute

Grazhdanskiy prosp. 14, Saint-Petersburg, 195220 Russia

G. G Panova

Agrophysical Research Institute

Grazhdanskiy prosp. 14, Saint-Petersburg, 195220 Russia

References

  1. Sayed E. T., Abdelkareem M. A., Obaideen K.,Elsaid K., Wilberforce T., Maghrabie H. M., and Olabi A. G. Progress in plant-based bioelectrochemical systems and their connection with sustainable development goals. Carbon Resources Conversion, 4, 169–183 (2021). doi: 10.1016/j.crcon.2021.04.004
  2. Logan B. E. Microbial fuel cell (John Wiley & Sons, 2008).
  3. Pant D., Singh A., Van Bogaert G., Olsen S. I., NigamP. S., Diels L., and Vanbroekhoven K. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Advances, 2 (4), 1248–1263 (2012). doi: 10.1039/C1RA00839K
  4. Li X., Abu-Reesh I. M., and He Z. Development ofbioelectrochemical systems to promote sustainable agriculture. Agriculture, 5 (3), 367–388 (2015). doi: 10.3390/agriculture5030367
  5. Strik D. P., Hamelers H. V. M., Snel J. F., andBuisman C. J. Green electricity production with living plants and bacteria in a fuel cell. Int. J. Energy Res., 32 (9), 870–876 (2008). doi: 10.1002/er.1397
  6. Gul M. M. and Ahmad K. S. Bioelectrochemical systems: sustainable bio-energy powerhouses. Biosensors and Bioelectronics, 142, 111576 (2019). doi: 10.1016/j.bios.2019.111576
  7. Wang S., Adekunle A., and Raghavan V. Exploring theintegration of bioelectrochemical systems and hydroponics: Possibilities, challenges, and innovations, J. Cleaner Prod., 366, 132855 (2022). doi: 10.1016/j.jclepro.2022.132855
  8. Yan X., Wang Z., Huang L., Wang C., Hou R., Xu Z.,and Qiao X. Research progress on electrical signals in higher plants, Progr. Natural Sci. 19 (5), 531 (2009). doi: 10.1016/j.pnsc.2008.08.009
  9. Dziubinska H., Trebacz K., and Zawadski T. The effectof excitation on the rate of respiration in the liverwort Conocephalum conicum. Physiologia Plantarum, 75, 417–423 (1989). doi: 10.1111/J.1399-3054.1989. TB04648.X
  10. Davies E., Zawadzki T., and Witters D. Electrical activity and signal transmission in plants: how do plants know. In: Plant signaling, plasma membrane and change of state, Ed. by C. Penel and H. Greppin (University of Geneva Press, Geneva, Switzerland), pp. 119–137 (1991).
  11. Pickard B. G. Action potentials in higher plants. Botan. Rev., 39, 172–201 (1973).
  12. Maffei M. and Bossi S. Electrophysiology and plant responses to biotic stress. In: Plant electrophysiology: theory and methods, Ed. by A. G. Volkov (Springer, Berlin, Heidelberg, 2006), pp. 461–481. doi: 10.1007/978-3540-37843-3_20
  13. Медведев С. С. Электрофизиология растений (Издво СпбГУ., СПб., 1998).
  14. Опритов В. А. Проблемы и перспективы изучения биоэлектрогенеза у высших растений. Вестн. Нижегородского ун-та им. Н.И. Лобачевского (Материалы выездной сессии ОФР РАН по проблемам биоэлектрогенеза и адаптации у растений (2000 г.), б/н, 7–10 (2001).
  15. Пятыгин С. С. Распространяющиеся электрические сигналы в растениях. Цитология, 50 (2), 154–159 (2008).
  16. Опритов В. А., Тятыгин С. С. и Ретивин В. Г. Биоэлектрогенез у высших растений (Наука, М., 1991).
  17. Tazawa M. and Shimmen T. How characean cells have contributed to the progress of plant membrane biophysics. Functional Plant Biol., 28 (7), 523–529 (2001). doi: 10.1071/PP01027
  18. Fromm J. and Spanswick R. Characteristics of action potentials in willow (Salix viminalis L.). J. Exp. Botany, 44 (7), 1119–1125 (1993). doi: 10.1093/jxb/44.7.1119
  19. Пятыгин С. С., Воденеев В. А. и Опритов В. А. Сопряжение генерации потенциала действия в клетках растений с метаболизмом: современное понимание проблемы. Успехи соврем. биологии, 125 (5), 520–528 (2005).
  20. Oyarce P. and Gurovich L. Electrical signals in avocadotrees: Responses to light and water availability conditions. Plant Signaling & Behavior, 5 (1), 34–41 (2010). doi: 10.4161/psb.5.1.10157
  21. Volkov A. G., Dunkley T. C., Morgan S. A., Ruff II D.,Boyce Y. L., and Labady A. J. Bioelectrochemical signaling in green plants induced by photosensory systems. Bioelectrochemistry, 63 (1–2), 91–94 (2004). doi: 10.1016/j.bioelechem.2003.09.025
  22. Bentrup F.-W. Cellular polarity. In Cellular Interactions, Ed. by H. F. Linskens and J. Heslop-Harrison (Springer-Verlag, Berlin, 1984), pp. 473–490.
  23. Kabutey F. T., Zhao Q., Wei L., Ding J., Antwi P., Quashie F. K., and Wang W. An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renew. Sustain. Energy Rev., 110, 402–414 (2019). doi: 10.1016/j.rser.2019.05.016
  24. Choudhury P., Prasad Uday U. S., Bandyopadhyay T. K.,Ray R. N., and Bhunia B. Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review. Bioengineered, 8 (5), 471–487 (2017). doi: 10.1080/21655979. 2016.1267883
  25. Sarma P. J. and Mohanty K. Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bioelectricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode. J. Biosci. Bioeng., 126, 404–410 (2018). doi: 10.1016/j.jbiosc.2018.03.009
  26. Regmi R., Nitisoravut R., and Ketchaimongkol J. A decade of plant-assisted microbial fuel cells: looking back and moving forward. Biofuels, 9, 605–612 (2018). doi: 10.1080/17597269.2018.1432272
  27. Kaku N., Yonezawa N., Kodama Y., and Watanabe K.Plant/microbe cooperation for electricity generation in a rice paddy field. Appl. Microbiol. Biotechnol., 79, 43– 49 (2008). doi: 10.1007/s00253-008-1410-9
  28. Sudirjo E., Buisman C. J., and Strik D. P. Activatedcarbon mixed with marine sediment is suitable as bioanode material for Spartina anglica sediment/plant microbial fuel cell: plant growth, electricity generation, and spatial microbial community diversity. Water, 11 (9), 1810 (2019). doi: 10.3390/w11091810
  29. Apollon W., Kamaraj S. K., Silos-Espino H., PeralesSegovia C., Valera-Montero L. L., MaldonadoRuelas V. A., Vazquez-Gutierrez M. A., Ortiz-Medina R. A., Flores-Benitez S., and Gomez-Leyva J. F. Impact of Opuntia species plant bio-battery in a semiarid environment: demonstration of their applications. Appl. Energy, 279, 115788 (2020). doi: 10.1016/j.apenergy.2020.115788
  30. Schievano A., Colombo A., Grattieri M., Trasatti S. P.,Liberale A., Tremolada P., Pino C., and Cristiani P. Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies. J. Power Sources, 340, 80–88 (2017). doi: 10.1016/j.jpowsour.2016.11.037
  31. Osorio-de-la-Rosa E., Vazquez-Castillo J., CastilloAtoche A., Heredia-Lozano J., Castillo-Atoche A., Becerra-Nuñez G., and Barbosa, R. Arrays of plant microbial fuel cells for implementing self-sustainable wireless sensor networks. IEEE Sensors J., 21 (2), 1965–1974 (2021). doi: 10.1109/JSEN.2020.3019986
  32. Jung S., Lee J., Park Y. K., and Kwon E. E. Bioelectrochemical systems for a circular bioeconomy. Bioresource Technol., 300, 122748 (2020). doi: 10.1016/j.biortech.2020.122748
  33. Панова Г. Г., Удалова О. Р., Канаш Е. В., Галушко А. С., Кочетов А. А., Прияткин Н. С., Архипов М. В. и Черноусов И. Н. Основы физического моделирования «идеальных» агроэкосистем. Журн. техн. физики, 90 (10), 1633–1639 (2020). doi: 10.21883/JTF.2020.10.49792.429-19
  34. Кулешова Т. Э., Бушлякова А. В. и Галль Н. Р. Неинвазивное измерение биоэлектрических потенциалов растений. Письма в Журн. техн. физики, 45 (5), 6–8 (2019). doi: 10.21883/PJTF.2019.05. 47387.17541
  35. Чесноков Ю. В., Канаш Е. В., Мирская Г. В., Кочерина Н. В., Русаков Д. В., Ловассер У. и Бёрнер А. Картирование QTL индексов диффузного отражения листьев яровой гексаплоидной пшеницы (Triticum aestivum L.). Физиология растений, 66 (1), 46–57 (2019).
  36. MINI-PAM-II. Руководство по автономному использованию, Edition 3 (Heinz Walz GmbH, 2018).
  37. Кулешова Т. Э., Панова Г. Г., Галль Н. Р. и Галушко А. С. Концентрационный элемент на основе электрогенных процессов в корнеобитаемой среде. Письма в Журн. техн. физики, 48 (8), 29–32 (2022). doi: 10.21883/PJTF.2022.08.52363.19066
  38. Кулешова Т. Э., Галль Н. Р., Удалова О. Р. и Панова Г. Г. Многофункциональный комплекс датчиков для фитомониторинга в условиях интенсивной светокультуры. Агрофизика, 4, 33–39 (2020). doi: 10.25695/AGRPH.2020.04.06
  39. Kovinich N., Kayanja G., Chanoca A., Riedl K., Otegui M. S., and Grotewold E. Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Planta, 240, 931–940 (2014). doi: 10.1007/s00425-014-2079-1
  40. Гигиенические требования к безопасности и пищевой ценности пищевых продуктов. СанПиН 2.3.2.107801", 06.11.2001.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies