Astaxanthin Prevents Dysregulation of Mitochondrial Dynamics in Rat Brain Mitochondria Induced under Isoproterenol-Induced Injury

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mitochondria are involved in the development of diseases with different etiologies. The use of drugs which can enhance the functional state of mitochondria may turn into a promising therapeutic approach to diseases with different etiologies. Astaxanthin, a keto-carotenoid (xanthophyll) predominantly of marine origin, shows both lipophilic and hydrophilic properties and can penetrate the cell membrane to localize to mitochondria where it prevents mitochondrial dysfunction. This study examined the effect of astaxanthin on the functional state of rat brain mitochondria, investigated the changes in mitochondrial dynamics and mitophagy under isoproterenol-induced injury. In the presence of astaxanthin, mitochondria were more resistant to Ca2+-induced opening of a nonspecific pore, and the activity of complexes I, IV and V of the respiratory chain increased. Moreover, the presence of astaxanthin led to altered mitochondrial fission and fusion as well as mitophagy, in isoproterenol-induced mitochondrial dysfunction. This presumably increased the quantity of rat brain mitochondria and enhanced their functional state. Astaxanthin can be considered as a mitochondria-targeted agent in therapy in pathological conditions associated with oxidative damage and mitochondrial dysfunction caused by acute heart failure. Astaxanthin as a dietary supplement has the potential to provide antioxidant protection to cells in cardiovascular disease.

About the authors

R. R Krestinin

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Institutskaya ul. 3, Pushchino, Moscow Region, 142290, Russia

Yu. L Baburina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Institutskaya ul. 3, Pushchino, Moscow Region, 142290, Russia

I. V Odinokova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Institutskaya ul. 3, Pushchino, Moscow Region, 142290, Russia

L. D Sotnikova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Institutskaya ul. 3, Pushchino, Moscow Region, 142290, Russia

О. V Krestinina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: ovkres@mail.ru
Institutskaya ul. 3, Pushchino, Moscow Region, 142290, Russia

References

  1. Havakuk O., King K. S., Grazette L., Yoon A. J., Fong M., Bregman N., Elkayam U., and Kloner R. A. Heart FailureInduced Brain Injury. J. Am. Coll. Cardiol., 69, 1609–1616 (2017). DOI: 10.1016/ j.jacc.2017.01.022
  2. Mueller K., Thiel F., Beutner F., Teren A., Frisch S., Ballarini T., Moller H. E., Ihle K., Thiery J., Schuler G., Villringer A., and Schroeter M. L. Brain Damage With Heart Failure: Cardiac Biomarker Alterations and Gray Matter Decline. Circ. Res., 126, 750– 764 (2020). doi: 10.1161/CIRCRESAHA.119.315813
  3. Rezin G. T., Amboni G., Zugno A. I., Quevedo J., and Streck E. L. Mitochondrial dysfunction and psychiatric disorders. Neurochem. Res., 34, 1021–1029 (2009). doi: 10.1007/s1106400898658
  4. Bhatti J. S., Bhatti G. K., and Reddy P. H. Mitochondrial dysfunction and oxidative stress in metabolic disorders – A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta – Mol. Basis Dis., 1863, 1066–1077 (2017). doi: 10.1016/j.bbadis.2016.11.010
  5. Halliwell B. How to characterize an antioxidant: an update. Biochem. Soc. Symp., 61, 73–101 (1995). doi: 10.1042/bss0610073
  6. Regnier P., Bastias J., RodriguezRuiz V., CaballeroCasero N., Caballo C., Sicilia D., Fuentes A., Maire M., Crepin M., Letourneur D., Gueguen V., Rubio S., and PavonDjavid G. Astaxanthin from Haematococcus pluvialis Prevents Oxidative Stress on Human Endothelial Cells without Toxicity. Mar. Drugs, 13, 2857–2874 (2015). doi: 10.3390/md13052857
  7. HigueraCiapara I., FelixValenzuela L., and Goycoolea F. M. Astaxanthin: a review of its chemistry and applications. Crit. Rev. Food Sci. Nutr., 46, 185–196 (2006). doi: 10.1080/10408690590957188
  8. Kim S. H. and Kim H. Inhibitory Effect of Astaxanthin on Oxidative StressInduced Mitochondrial Dysfunction – A MiniReview. Nutrients, 10 (9), 1137 (2018) doi: 10.3390/nu10091137
  9. Baburina Y., Krestinin R., Odinokova I., Sotnikova L., Kruglov A., and Krestinina O. Astaxanthin Inhibits Mitochondrial Permeability Transition Pore Opening in Rat Heart Mitochondria. Antioxidants (Basel), 8, 576 (2019). doi: 10.3390/antiox8120576
  10. Krestinin R., Baburina Y., Odinokova I., Kruglov A., Fadeeva I., Zvyagina A., Sotnikova L., and Krestinina O. IsoproterenolInduced Permeability Transition PoreRelated Dysfunction of Heart Mitochondria Is Attenuated by Astaxanthin. Biomedicines, 8 (10), 437 (2020). doi: 10.3390/biomedicines8100437
  11. KrestininaO.,BaburinaY.,KrestininR.,OdinokovaI., Fadeeva I., and Sotnikova L. Astaxanthin Prevents Mitochondrial Impairment Induced by Isoproterenol in Isolated Rat Heart Mitochondria. Antioxidants (Basel), 9, 262 (2020). doi: 10.3390/antiox9030262
  12. Galasso C., Orefice I., Pellone P., Cirino P., Miele R., Ianora A., Brunet C., and Sansone C. On the Neuroprotective Role of Astaxanthin: New Perspectives? Mar. Drugs, 16, 247 (2018). doi: 10.3390/md16080247
  13. Akila P., Asaikumar L., and Vennila L. Chlorogenic acid ameliorates isoproterenolinduced myocardial injury in rats by stabilizing mitochondrial and lysosomal enzymes. Biomed. Pharmacother., 85, 582–591 (2017). doi: 10.1016/j.biopha.2016.11.067
  14. Twig G. and Shirihai O. S. The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal., 14, 1939–1951 (2011). DOI: 10.1089/ ars.2010.3779
  15. Cribbs J. T. and Strack S. Reversible phosphorylation of Drp1 by cyclic AMPdependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep., 8, 939–944 (2007). doi: 10.1038/sj.embor.7401062
  16. Zhao X. Y., Lu M. H., Yuan D. J., Xu D. E., Yao P. P., Ji W. L., Chen H., Liu W. L., Yan C. X., Xia Y. Y., Li S., Tao J., and Ma Q. H. Mitochondrial Dysfunction in Neural Injury. Front. Neurosci., 13, 30 (2019). doi: 10.3389/fnins.2019.00030
  17. Taylor R. and Goldman S. J. Mitophagy and disease: new avenues for pharmacological intervention. Curr. Pharm. Des., 17, 2056–2073 (2011). doi: 10.2174/138161211796904768
  18. Ding W. X. and Yin X. M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol. Chem., 393, 547–564 (2012). doi: 10.1515/hsz20120119
  19. Jin M., Liu X., and Klionsky D. J. SnapShot: Selective autophagy. Cell, 152, 368–368 (2013). e362, doi: 10.1016/j.cell.2013.01.004
  20. Mijaljica D., Prescott M., and Devenish R. Mitophagy: An Overview. In Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging, Ed. by M. A. Hayat (Acad. Press, 2014), pp. 103–116. doi: 10.1016/B9780124055285.000055
  21. Ambati R. R., Phang S. M., Ravi S., and Aswathanarayana R. G. Astaxanthin: sources, extraction, stability, biological activities and its commercial applicationsa review. Mar. Drugs, 12, 128–152 (2014). doi: 10.3390/md12010128
  22. Sims N. R. Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J. Neurochem., 55, 698–707 (1990).
  23. Baburina Y. L., Gordeeva A. E., Moshkov D. A., Krestinina O. V., Azarashvili A. A., Odinokova I. V., and Azarashvili T. S. Interaction of myelin basic protein and 2',3'cyclic nucleotide phosphodiesterase with mitochondria. Biochemistry (Moscow), 79, 555–565 (2014). doi: 10.1134/S0006297914060091
  24. Azarashvili T., Grachev D., Krestinina O., EvtodienkoY., Yurkov I., Papadopoulos V., and Reiser G. The peripheral-type benzodiazepine receptor is involved in control of Ca2+-induced permeability transition pore opening in rat brain mitochondria. Cell Calcium, 42, 27–39 (2007). doi: 10.1016/j.ceca.2006.11.004
  25. Baburina Y., Azarashvili T., Grachev D., Krestinina O., Galvita A., Stricker R., and Reiser G. Mitochondrial 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) interacts with mPTP modulators and functional complexes (I-V) coupled with release of apoptotic factors. Neurochem. Int., 90, 46–55 (2015). doi: 10.1016/j.neuint. 2015.07.012
  26. Jha P., Wang X., and Auwerx J. Analysis of Mitochondrial Respiratory Chain Supercomplexes Using Blue Native Polyacrylamide Gel Electrophoresis (BNPAGE). Curr. Protoc. Mouse Biol., 6, 1–14 (2016). doi: 10.1002/9780470942390.mo150182
  27. Escobar-Henriques M. and Anton F. Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation. Biochim. Biophys. Acta, 1833, 162–175 (2013). doi: 10.1016/j.bbamcr.2012.07.016
  28. Wei Y., Chiang W. C., Sumpter R., Jr., Mishra P., and Levine B. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell, 168, 224–238.E1–E6 (2017). doi: 10.1016/j.cell.2016.11.042
  29. Baburina Y., Krestinin R., Odinokova I., Fadeeva I., Sotnikova L., and Krestinina O. The Identification of Prohibitin in the Rat Heart Mitochondria in Heart Failure. Biomedicines, 9 (12), 1793 (2021). doi: 10.3390/biomedicines9121793
  30. Richards E. M., Li J., Stevens B. R., Pepine C. J., and Raizada M. K. Gut Microbiome and Neuroinf lammation in Hypertension. Circ. Res., 130, 401–417 (2022). doi: 10.1161/CIRCRESAHA.121.319816
  31. Kettenmann H., Hanisch U. K., Noda M., and Verkhratsky A. Physiology of microglia. Physiol. Rev., 91, 461–553 (2011). doi: 10.1152/physrev.00011.2010 Baburina Y., Krestinin R., Fedorov D., Odinokova I., Pershina E., Sotnikova L., and Krestinina O. The Improvement of Functional State of Brain Mitochondria with Astaxanthin in Rats after Heart Failure. Int. J. Mol. Sci., 24, 31 (2022). doi: 10.3390/ijms24010031
  32. Nishida Y., Nawaz A., Hecht K., and Tobe K. Astaxanthin as a Novel Mitochondrial Regulator: A New Aspect of Carotenoids, beyond Antioxidants. Nutrients, 14, 107 (2021). doi: 10.3390/nu14010107
  33. Kinnally K. W. and Antonsson B. A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis, 12, 857–868 (2007). doi: 10.1007/s10495-007-0722-z
  34. Kwong J. Q. and Molkentin J. D. Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab., 21, 206–214 (2015). doi: 10.1016/j.cmet.2014.12.001
  35. Twig G., Elorza A., Molina A. J., Mohamed H., Wikstrom J. D., Walzer G., Stiles L., Haigh S. E., Katz S., Las G., Alroy J., Wu M., Py B. F., Yuan J., Deeney J. T., Corkey B. E., and Shirihai O. S. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J., 27, 433–446 (2008). doi: 10.1038/sj.emboj.7601963
  36. Hom J. and Sheu S. S. Morphological dynamics of mitochondriaa special emphasis on cardiac muscle cells. J. Mol. Cell. Cardiol., 46, 811–820 (2009). doi: 10.1016/j.yjmcc.2009.02.023
  37. Gazaryan I. G. and Brown A. M. Intersection between mitochondrial permeability pores and mitochondrial fusion/fission. Neurochem. Res., 32, 917–929 (2007). doi: 10.1007/s11064-006-9252-2
  38. Burte F., Carelli V., Chinnery P. F., and Yu-Wai-Man P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol., 11, 11–24 (2015). doi: 10.1038/nrneurol.2014.228
  39. Reddy P. H., Reddy T. P., Manczak M., Calkins M. J., Shirendeb U., and Mao P. Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res. Rev., 67, 103–118 (2011). doi: 10.1016/j.brainresrev.2010.11.004
  40. Cui M., Ding H., Chen F., Zhao Y., Yang Q., and Dong Q. Mdivi-1 Protects Against Ischemic Brain Injury via Elevating Extracellular Adenosine in a cAMP/CREB-CD39-Dependent Manner. Mol. Neurobiol., 53, 240-253 (2016). doi: 10.1007/s12035-014-9002-4
  41. Youle R. J. and van der Bliek A. M. Mitochondrial fission, fusion, and stress. Science, 337, 1062-1065 (2012). doi: 10.1126/science.1219855
  42. Li W., He P., Huang Y., Li Y. F., Lu J., Li M., Kurihara H., Luo Z., Meng T., Onishi M., Ma C., Jiang L., Hu Y., Gong Q., Zhu D., Xu Y., Liu R., Liu L., Yi C., Zhu Y., Ma N., Okamoto K., Xie Z., Liu J., He R.-R., and Feng D. Selective autophagy of intracellular organelles: recent research advances. Theranostics, 11, 222–256 (2021). doi: 10.7150/thno.49860
  43. Tatsuta T., Model K., and Langer T. Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol. Biol. Cell, 16, 248–259 (2005). doi: 10.1091/mbc.e04-09-0807 45. Yan C., Gong L., Chen L., Xu M., Abou-Hamdan H., Tang M., Desaubry L., and Song Z. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy, 16, 419–434 (2020). doi: 10.1080/15548627.2019.1628520
  44. Yan C., Gong L., Chen L., Xu M., Abou-Hamdan H., Tang M., Desaubry L., and Song Z. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy, 16, 419–434 (2020). doi: 10.1080/15548627.2019.1628520

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies