Physicochemical properties and composition of the liposome lipids from lecithin depending on conditions that lead to the formation of liposome lipids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effects of the composition and physicochemical properties of lecithin lipids, ultrasound exposure and centrifugation time on the composition and physicochemical properties of liposomes formed from lecithin were studied. It was found that the intensity of lipid peroxidation of liposomes is interrelated by the reversal correlation with the phospholipids share in the total lipid composition of lecithin and the direct correlation with the relative content of cardiolipin in the lecithin phospholipid composition. It was shown that ultrasound exposure and centrifugation produce stage changes in the composition and properties of the liposome lipids. Decreases in the levels of medium pH and the intensity of lipid peroxidation of liposomes were observed under centrifugal conditions. It was found that the stage changes in the ability of liposome lipids for oxidation depending on the time of ultrasound exposure and centrifugation are due to the relative changes in the sum share of the acid minor fractions in the composition of their phospholipids.

About the authors

L. N Shishkina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: shishkina@sky.chph.ras.ru
Moscow, Russia

D. V Paramonov

State Scientific Research Institute of Biological Engineering

Moscow, Russia

M. A Klimovich

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

M. V Kozlov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

References

  1. Л. Б. Марголис и Л. Д. Бергельсон, Липосомы и их взаимодействие с клетками (Наука, М., 1986).
  2. G. Gregoriadis, Liposome Technology. Vol. 1: Preparation of Liposomes (CRC Press, Floryda, 1989).
  3. G. Gregoriadis, Liposome Technology. Vol. 3: Targeted Drug Delivery and Biological Interaction (CRC Press, Boston, 1990).
  4. Ю. Н. Левчук и З. Н. Воловик, Биофизика, 28 (2), 266 (1983).
  5. Ultrasound: Its Chemical, Physical and Biological Effects, Vol. XIII, Ed. by K.S. Suslick (New York: Weinheim, 1988).
  6. М. А. Маргулис, Успехи физ. наук, 170. 263 (2003).
  7. В. А. Меньшов, Л. Н. Шишкина, Е. Б. Бурлакова и др., Прикл. биохимия и микробиология, 29 (3). 412 (1993).
  8. К. М. Маракулина, Р. В. Крамор, Ю. К. Луканина и др., Журн. физ. химии, 90 (2), 182 (2016).
  9. M. A. Klimovich, L. N. Shishkina, D. V. Paramonov, and V. I. Trofimov, Oxid.Commun., 33 (4), 965 (2010).
  10. M. Mosca, A. Ceglie, and L. Ambrosone, Chemistry and Physics of Lipoids, 164 (2), 158 (2011).
  11. Биологические мембраны: Методы, под ред. Дж. Б. С. Финдлея и В. Х. Эванза (Мир, М., 1990).
  12. Л. Г. Шишкина, Е. В. Кушнирева и М. А. Смотряева, Радиац. биология. Радиоэкология, 44 (3), 289 (2004).
  13. T. Asakawa and S. Matsushita, Lipids, 15, 137 (1980).
  14. Э. Ф. Брин и С. О. Травин, Хим. физика, 10 (6), 830 (1991).
  15. М. В. Козлов, Дисс.. канд. биол. наук (Москва, 2008).
  16. В. А. Стручков и Н. Б. Стражевская, Биохимия, 65 (5), 620 (2000).
  17. Р. Геннис, Биомембраны: Молекулярная структура и функции (Мир, М., 1997).
  18. Л. Н. Шишкина, М. А. Климович и М. В. Козлов, Биофизика, 59 (2), 380 (2014).
  19. R. Lordan, A. Tsoupras, and I. Zabetakis, Molecules, 22 (11), 1964 (2017). DOI: 10/3390/molecules22111964

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies