Proteostasis of heat shock protein 90 in skeletal muscles of the long-tailed ground squirrel during hibernation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We investigated changes in the content of heat shock protein 90 in m. soleus (comprised of mainly fibers expressing the MyHC slow isoform I) and m. gastrocnemius (composed of mainly fibers expressing the MyHC fast isoforms II) of the long-tailed ground squirrel Urocitellus undulatus in different periods of the annual cycle: summer activity (seasonal control), hypothermia/torpor, winter (interbout) activity. The content of the protein in both muscles was found not to change throughout the entire hibernation period despite the development of atrophic changes, more pronounced in fast m. gastrocnemius. The role of HSP90 in maintaining the stability of giant sarcomeric titin protein molecules is discussed with reference to animal's entry into and exit from hypothermia, when the activity of calpain proteases increases due to the increased content of Ca2+ in the cytosol of muscle cells; and with respect to the torpor, when the activity of calpains is, most likely, not inhibited completely. During the interbout activity with an observed increased titin turnover in squirrel's striated muscles, a constant content of HSP90 appears to be required for the correct folding of newly synthesized titin molecules and their integration into sarcomeres, as well as for the removal of misfolded titin molecules and other proteins. Thus, HSP90 proteostasis in skeletal muscles of the long-tailed ground squirrel can contribute to maintaining a steady-state level of titin and, possibly, other sarcomeric proteins during hibernation, which, in turn, will contribute to maintaining a highly ordered sarcomeric structure and the necessary level of muscle contractile activity in different phases of the torpor-arousal cycle.

About the authors

Yu. V Gritsyna

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

S. S Popova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

G. Z Mikhailova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

L. G Bobyleva

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

S. N Udaltsov

Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

O. S Morenkov

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

N. M Zakharova

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

I. M Vikhlyantsev

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences;Institute of Fundamental Medicine and Biology, Kazan Federal University

Email: ivanvikhlyantsev@gmail.com
Pushchino, Moscow Region, Russia;Kazan, Russia

References

  1. S. M. Mohr, S. N. Bagriantsev, and E. O. Gracheva, Annu. Rev. Cell Dev. Biol., 36, 315 (2020).
  2. K. L. Vermillion, K. J. Anderson, M. Hampton, and M. T. Andrews, Physiol. Genomics, 47 (3), 58 (2015).
  3. D. A. Mugahid, T. G. Sengul, X. You, et al., Sci. Rep., 9 (1), 19976 (2019).
  4. A. V. Goropashnaya, B. M. Barnes, and V. B. Fedorov, Sci. Rep., 10 (1):9010 (2020).
  5. E. Tseng, J. G. Underwood, B. D. Evans Hutzenbiler, et al., Genes, Genomes, Genetics, 12 (3), jkab422 (2022).
  6. W. A. Ingelson-Filpula and K. B. Storey, Epigenomes, 2021 5(4):28 (2021).
  7. C. J. Cotton, J. Exp. Biol., 219 (Pt 2), 226 (2016).
  8. M. V. Lazareva, K. O. Trapeznikova, I. M. Vikhliantsev, et al., Biofizika, 57 (6), 982 (2012).
  9. A. G. Hindle, A. Karimpour-Fard, L. E. Epperson, et al., Am. J. Physiol. Regul.Integr.Comp. Physiol., 301 (5), 1440 (2011).
  10. I. M. Vikhlyantsev, E. V. Karaduleva, and Z. A. Podlubnaya, Biophysics, 53, 598 (2008).
  11. I. M. Vikhlyantsev and Z. A. Podlubnaya, Biochemistry (Moscow), 77 (13), 1515 (2012).
  12. S. Popova, A. Ulanova, Y. Gritsyna, et al., Sci. Rep., 10 (1), 15185 (2020).
  13. L. T. Donlin, C. Andresen, S. Just, et al., Genes Dev., 26 (2), 114 (2012).
  14. S. F. Eddy, J. D. McNally, and K. B. Storey, Arch. Biochem. Biophys., 435 (1), 103 (2005).
  15. K. Lee, J. Y. Park, W. Yoo, et al., J. Cell Biochem., 104 (2):642 (2008).
  16. C. W. Wu, K. K. Biggar, J. Zhang, et al., Genomics, Proteomics & Bioinformatics, 13 (2), 119 (2015).
  17. B. E. Luu, S. Wijenayake, J. Zhang, et al., Comp. Biochem. Physiol. B: Biochem. Mol Biol., 224, 26 (2018).
  18. C. L. Childers, S. N. Tessier, and K. B. Storey, Peer J., 7, e7587 (2019).
  19. A. Krivoruchko and K. B. Storey, J.Comp. Physiol. B, 180 (3), 403 (2010).
  20. H. M. Rabeae, S. S. Mahfouz, A. K. M. Abdel Latif, et al., J. Therm. Biol. 114, 103490 (2023).
  21. Н.М. Захарова, Фундаментальные исследования, 6, 1401 (2014).
  22. U. K. Laemmli, Nature, 227 (5259), 680 (1970).
  23. S. Kotter and M. Kruger, Front. Physiol., 13, 914296 (2022).
  24. K. Hnia, T. Clausen, and C. Moog-Lutz, Trends Mol. Med., 25 (9), 760 (2019).
  25. Z. V. Wang and J. A. Hill, Cell Metab. 21(2), 215 (2015).
  26. P. Csermely, T. Schnaider, C. Soti, et al., Pharmacol. Ther., 79 (2), 129 (1998).
  27. S. S. Popova, I. M. Vikhlyantsev, N. M. Zakharova, et al., Dokl. Biochem. Biophys. 472 (1), 56 (2017).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies