Role of nitric oxide and calcium ions in the effects of hydrogen sulfide on contractile activity of rat jejunum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study was performed to explore the role of nitric oxide, intracellular and extracellular calcium in the effects of hydrogen sulfide on spontaneous and carbachol-induced contractions of a rat jejunum preparation during a isometric contraction. Application of H2S donor, sodium hydrosulfide, led to a decrease in tonic tension, the amplitude and frequency of spontaneous contractions, as well as in the amplitude induced by carbachol, a nonspecific acetylcholine receptor agonist. Inhibiting the production of endogenous NO synthesis by with L-NAME, the effect of H2S donor remained unchanged, while in the presence of SNAP, a NO donor, the effects of NaHS on the amplitude of spontaneous and carbachol-induced contractions were less pronounced. Dantrolene, a ryanodine receptor inhibitor was used to stop a decrease in tonic tension in the presence of NaHS. The calcium-free solution reduced the inhibitory effect of NaHS on carbachol-induced contractions. This suggests that the inhibitory effect of H2S is associated with the dynamics of the intracellular concentration of calcium ions, and the interaction between NO and H2S occurs at the level of common targets of two gases.

About the authors

D. M Sorokina

Kazan Federal University

Kazan, Republic of Tatarstan, Russia

I. F Shaidullov

Kazan Federal University

Kazan, Republic of Tatarstan, Russia

A. R Gizzatullin

Kazan Federal University

Kazan, Republic of Tatarstan, Russia

F. G Sitdikov

Kazan Federal University

Kazan, Republic of Tatarstan, Russia

G. F Sitdikova

Kazan Federal University

Email: guzel.sitdikova@kpfu.ru
Kazan, Republic of Tatarstan, Russia

References

  1. A. Hermann, G. F. Sitdikova, and T. M. Weiger, Gasotransmitters Physiol. Pathophysiol., 1-204 (2013).
  2. M. Jimenez, V. Gil, M. Martinez-Cutillas, et al., Br. J. Pharmacol., 174, 2805 (2017).
  3. M. H. Stipanuk and P. W. Beck, Biochem. J., 206, 267 (1982).
  4. N. Shibuya, M. Tanaka, M. Yoshida, et al., Antioxid. Redox Signal., 11, 703 (2009).
  5. K. Sudha, S. Anitta, P. M. Devi, and G. Thejomayah, Int. J. Soc. Sci.Interdiscip. Res., 4, 165 (2015).
  6. D. R. Yarullina, R. O. Mikheeva, G. I. Sabirullina, et al., Bull. Exp. Biol. Med., 160, 343 (2016).
  7. G. Sitdikova, A. Hermann, A. Yakovlev, Uchenye Zap. Kazan. Univ. Seriya Estestv. Nauk, 160, 686 (2018).
  8. M. S. Kasparek, D. R. Linden, G. Farrugia, and M. G. Sarr, J. Surg. Res., 175, 234 (2012).
  9. L. Sha, D. R. Linden, G. Farrugia, and J. H. Szurszewski, J. Physiol., 592, 1077 (2014).
  10. X. Quan, H. Luo, Y. Liu, et al., PLoS One, 10, e0121331 (2015).
  11. K. M. Sanders and S. M. Ward, Br. J. Pharmacol., 176, 212 (2019).
  12. D. Gallego, P. Clave, J. Donovan, et al., Neurogastroenterol. Motil., 20, 1306 (2008).
  13. M. Nagao, J. A. Duenes, and M. G. Sarr, J. Gastrointest. Surg., 16, 334 (2012).
  14. G. F. Sitdikova, N. N. Khaertdinov, and A. L. Zefirov, Bull. Exp. Biol. Med., 151, 163 (2011).
  15. М. У. Шафигуллин, Р. А. Зефиров, Г. И. Сабируллина и др., Бюл. эксперим. биологии и медицины, 157, 275 (2014).
  16. Г. И. Сабируллина, М. У. Шафигуллин, Н. Н. Хаертдинов и др., Вестник науки Сибири, № 15, 339 (2015).
  17. И. Ф. Шайдуллов, М. У. Шафигуллин, Д. М. Габитова, и др., Журн. эволюц. биохимии и физиологии, 54, 355 (2018).
  18. C. Coletta, A. Papapetropoulos, K. Erdelyi, et al., Proc. Natl. Acad. Sci. USA, 109, 9161 (2012).
  19. W. Zhao, R. Wang, Am. J. Physiol. Heart Circ. Physiol., 283 (2), H474 (2002).
  20. K. Takeuchi, E. Aihara, M. Kimura, et al., Curr. Med. Chem., 19, 43 (2012).
  21. M. Y. Ali, C. Y. Ping, Y. Y. P. Mok, et al., Br. J. Pharmacol., 149, 625 (2006).
  22. Z. Wang, Y. Yan, Y. Wang, and F Tong, Biomed. Pharmacother., 112, 108736 (2019).
  23. G. A. Prathapasinghe, Y. L. Siow, Z. Xu, and O. Karmin, Am. J. Physiol. Renal Physiol., 295 (4), F912 (2008), doi: 10.1152/AJPRENAL.00040.2008
  24. G. K. Kolluru, X. Shen, and C. G. Kevil, Redox Biol., 1, 313 (2013).
  25. Д. М. Габитова, И. Ф. Шайдуллов, Г. И. Сабируллина и др., Бюл. эксперим. биологии и медицины, 160, 18 (2017).
  26. F. Zhao, P. Li, S. R. W. Chen, et al., J. Biol. Chem., 276, 13810 (2001).
  27. M. L. Lo Faro, B. Fox, J. L. Whatmore, et al., Nitric Oxide Biol. Chem., 41, 38 (2014).
  28. B. V. Nagpure and J. S. Bian, Handb. Exp. Pharmacol. 230, 193 (2015).
  29. A. Walewska, A. Szewczyk, and P. Koprowski, Int. J. Mol. Sci., 19 (10), 3227 (2018).
  30. D. Wu, Q. Hu, and D. Zhu, Oxid. Med. Cell. Longev., 2018, ID 4579140 (2018).
  31. D. R. Linden, M. D. Levitt, G. Farrugia, and J. H. Szurszewski, Antioxid. Redox Signal., 12, 1135 (2010).
  32. R. Wang, Physiol. Rev., 92, 791 (2012).
  33. S. B. Singh and H. C. Lin, Microorganisms, 3, 866 (2015).
  34. J. E. Belizario and J. Faintuch, Exp. Suppl., 109, 459 (2018).
  35. S. Yang, D. Deng, Y. Luo, et al., RSC Adv., 6, 64208 (2016).
  36. G. R. Martin, G. W. McKnight, M. S. Dicay, et al., Dig. Liver Dis., 42, 103 (2010).
  37. R. Hosoki, N. Matsuki, and H. Kimura, Biochem. Biophys. Res.Commun., 237, 527 (1997).
  38. I. Dhaese, I. Van Colen, and R. A. Lefebvre, Eur. J. Pharmacol., 628, 179 (2010).
  39. L. T. Lucetti, R. O. Silva, A. P. M. Santana, et al., Dig. Dis. Sci., 62, 93 (2017).
  40. Y. Q. Huang, H. F. Jin, H. Zhang, et al., Adv. Exp. Med. Biol., 1315, 205 (2021).
  41. E. Idrizaj, C. Traini, M. G. Vannucchi, and M. C. Baccari, Int. J. Mol. Sci., 22 (2021).
  42. T. Okamoto, M. J. Barton, G. W. Hennig, et al., Neurogastroenterol. Motil., 26, 556 (2014).
  43. N. J. Zyromski, M. L. Kendrick, D. M. Nagorney, et al., J. Gastrointest. Surg., 5, 588 (2001).
  44. T. Ueno, J. A. Duenes, A. E. Zarroug, and M. G. Sarr, J. Gastrointest. Surg., 8, 831 (2004).
  45. B. M. Balsiger, J. A. Duenes, N. Obtani, et al., J. Gastrointest. Surg., 4, 86 (2000).
  46. S. Moncada, R. M. Palmer, and E. A. Higgs, Pharmacol. Rev., 43 (1991).
  47. T. Ordog, S. M. Ward, and K. M. Sanders, J. Physiol., 518, 257 (1999).
  48. D. Groneberg, B. Voussen, and A. Friebe, Curr. Med. Chem., 23, 2715 (2016).
  49. S. H. Francis, J. L. Busch, and J. D. Corbin, Pharmacol. Rev., 62, 525 (2010).
  50. K. Y. So, S. H. Kim, H. M. Sohn, et al., Mol. Cells, 27, 525 (2009).
  51. J. Geeson, K. Larsson, S. M. O. Hourani, and N. J. Toms, Auton. Autacoid Pharmacol., 22, 297 (2002).
  52. J. G. De Man, B. Y. De Winter, A. G. Herman, and P. A. Pelckmans, Br. J. Pharmacol., 150, 88 (2007).
  53. C. E. Van Hove, C. Van Der Donckt, A. G. Herman, et al., Br. J. Pharmacol., 158, 920 (2009).
  54. A. L. Gonzales and S. Earley, Microcirculation, 20, 337 (2013).
  55. I. Castro-Piedras and J. F. Perez-Zoghbi, J. Physiol., 591, 5999 (2013).
  56. K. S. Murthy, Annu. Rev. Physiol., 68, 345 (2006).
  57. P. J. Yoon, S. P. Parajuli, D. C. Zuo, et al., Chonnam Med. J., 47, 72 (2011).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies