Cellular response to exposure to ionizing radiation and light in the presence of a photosensitizer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study has been conducted to investigate the effects of X-ray irradiation in combination with photodynamic therapy on human lung adenocarcinoma cell line A549 used as a lung cancer model. It has been established that the concomitant use of these two types of radiation leads to much lower survival rate of tumor cells than that observed after the sequential use of these types of radiation or exposure to each type of radiation measured separately. For different combinations of the two mentioned types of radiation, the mRNA expression levels of some genes involved in cell cycle regulation (p21, DINOL), apoptosis (BAX, PUMA), and DNA repair (PARP1, OGG1, Rad51, Lig4) were determined in cells. The highest level of expression after exposure to different combinations of radiation was observed for the lncRNA DINOL gene. The increased expression of the BAX and PUMA genes indicates the development of apoptosis. The results obtained confirm that there is synergism in X-ray radiation and photodynamic therapy due to the concomitant use of these types of radiation.

About the authors

S. V Akulinichev

Institute for Nuclear Research, Russian Academy of Sciences;B.V. Petrovsky Russian Research Center of Surgery

Email: akulinic@inr.ru
Troitsk, Moscow, Russia;Moscow, Russia

S. I Glukhov

Institute for Nuclear Research, Russian Academy of Sciences;Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: serglukhovmb@gmail.com
Troitsk, Moscow, Russia;Pushchino, Moscow Region, Russia

A. V Efremenko

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

D. A Kokontsev

Institute for Nuclear Research, Russian Academy of Sciences;B.V. Petrovsky Russian Research Center of Surgery

Troitsk, Moscow, Russia;Moscow, Russia

E. A Kuznetsova

Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

V. V Martynova

Institute for Nuclear Research, Russian Academy of Sciences

Troitsk, Moscow, Russia

A. V Feofanov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences;Lomonosov Moscow State University

Moscow, Russia

I. A Yakovlev

Institute for Nuclear Research, Russian Academy of Sciences;B.V. Petrovsky Russian Research Center of Surgery

Troitsk, Moscow, Russia;Moscow, Russia

References

  1. L. He, X. Yu, and W. Li, ACS Nano, 16 (12), 19691 (2022). doi: 10.1021/acsnano.2c07286
  2. A. Bansal, F. Yang, T. Xi, et al., Proc. Natl. Acad. Sci. USA, 115 (7), 1469 (2018). DOI: 10.1073/ pnas.1717552115
  3. Y. Fatma and T. Ayga, Nov. Appro. in Can. Study, 1 (2), 000506 (2018). doi: 10.31031/NACS.2018.01.000506
  4. A. Colasanti, A. Kisslinger, M. Quarto, et al., Acta Biochim. Pol., 51 (4), 1039 (2004).
  5. A. R. Montazerabadi., A. Sazgarnia, M. H. Bahreyni-Toosi, et al., J. Photochem Photobiol B, 109, 42 (2012). doi: 10.1016/j.jphotobiol.2012.01.004
  6. B. W. Pogue, J. A. O'Hara, E. Demidenko, et al., Cancer Res., 63 (5), 1025 (2003).
  7. М. А. Каплан, А. И. Малыгина, Г. В. Пономарев и др., Рос. биотерапевтич. журн., 14, 79 (2015).
  8. Ю. С. Романко, А. Ф. Цыб, М. А. Каплан и др., Бюл. эксперим. биологии и медицины, 139 (4), 456 (2005).
  9. D. Xu, A. Baidya, K. Deng, et al., Oncol. Rep., 45 (2), 547 (2021). doi: 10.3892/or.2020.7871
  10. A. Hak, M. S. Ali, S. A. Sankaranarayanan, et al., ACS Appl. Bio Mater., 6 (2), 349 (2023). doi: 10.1021/acsabm.2c00891
  11. L.Wang, G. Li, L. Cao, et al., ACS Pharmacol. Transl. Sci., 5 (2), 110 (2022). doi: 10.1021/acsptsci.1c00249
  12. J. S.Russell, K. Brady, W. E. Burgan, et al., Cancer Res., 63 (21), 7377 (2003).
  13. H. H. Y. Chang, N. R. Pannunzio, N. Adachi, et al., Nat. Rev. Mol. Cell. Biol., 18 (8), 495 (2017). doi: 10.1038/nrm.2017.48
  14. K. Tsouroula, A. Furst, M. Rogier, et al., Mol. Cell, 63 (2), 293 (2016). doi: 10.1016/j.molcel.2016.06.002
  15. F. Aymard, B. Bugler, C. K. Schmidt, et al., Nat. Struct. Mol. Biol., 21 (4), 366 (2014). doi: 10.1038/nsmb.2796
  16. A. Ciccia and S. J. Elledge, Mol. Cell, 40 (2), 179 (2010). doi: 10.1016/j.molcel.2010.09.019
  17. A. M. Schmitt, J. T. Garcia, T. Hung, et al., Nat. Genet., 48 (11), 1370 (2016). doi: 10.1038/ng.3673
  18. M. P. A. Luna-Vargas and J. E. Chipuk, Trends Cell Biol., 26 (12), 906 (2016). doi: 10.1016/j.tcb.2016.07.002
  19. H. Rezaeejam, A. Shirazi, M. Valizadeh, et al., J. Cancer Res. Ther., 11 (3), 549 (2015). doi: 10.4103/09731482.160912
  20. M. A. Grin, I. S. Lonin, S. V. Fedyunin, et al., Mendeleev Commun., 17, 209 (2007).
  21. A. V. Efremenko, A. A. Ignatova, A. A. Borsheva, et al., Photochem. Photobiol. Sci., 11 (4), 645 (2012).
  22. A. V. Efremenko, A. A. Ignatova, M. A. Grin, et al., Photochem. Photobiol. Sci., 13, 92 (2014).
  23. Г. В. Пономарев, Рос. биотерапевтич. журн., 6 (1), 24 (2007).
  24. Г. В. Пономарев, С. Ю. Егоров, А. А. Стрижаков и др., Рос. биотерапевтич. журн., 12 (2), 68 (2013).
  25. И. А. Кондратьева, Н. В. Воробьева, О. В. Буракова и др., в кн. Практикум по иммунологии, под ред. И. Кондратьева и В. Самуилова (Изд. МГУ, М., 2001), сс. 17-32.
  26. K. J. Livak and T. D. Schmittgen, Methods, 25 (4), 402 (2001), doi: 10.1006/meth.2001.1262
  27. J.W. Tukey, Biometrics, 5 (2), (1949).
  28. A. Hafner, M. L. Bulyk, A. Jambhekar, et al., Nat. Rev. Mol. Cell Biol., 20 (4), 199 (2019), doi: 10.1038/s41580-019-0110-x
  29. S. Kobashigawa, K. Suzuki, and S. Yamashita, Biochem. Biophys. Res.Commun., 414 (4), 795 (2011), doi: 10.1016/j.bbrc.2011.10.006

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies