Mechanism of action of the low-frequency electromagnetic field on aqueous solutions of biopolymers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents the mechanism of signal transformation by which a signal from the magnetic component of the low-frequency electromagnetic field with extremely low energy is changed into chemical and biochemical signals which elicit a biological response in aqueous solutions of biopolymers based on nucleic acids and proteins. A theoretical model developed shows that the basis of oxidative DNA damage and conformational transitions of proteins is a universal mechanism associated with a change in the amount of the most long-lived form - hydrogen peroxide in a chemical oscillator of mutual transformations of reactive oxygen species under the influence of low-intensity electromagnetic field exposure. It has been experimentally established that the quantitative content of hydrogen peroxide in solutions of biopolymers resonantly depends on the frequency of applied field. Conformational changes in proteins are accompanied by an increase in the availability and activity of the nucleophilic centers that are potential targets for reactive oxygen species. Complete unfolding and denaturation of the amino acid chain of the protein under the influence of low-frequency electromagnetic field exposure do not occur. It has been shown that enhanced hydrogen peroxide formation at 3 Hz and 50 Hz leads to oxidative modification of nitrogenous bases in DNA.

About the authors

E. E Tekutskaya

Kuban State University

Email: tekytska@mail.ru
Krasnodar, Russia

G. P Ilchenko

Kuban State University

Krasnodar, Russia

M. G Baryshev

Kuban State Technological University

Krasnodar, Russia

References

  1. В.Н. Бинги, Биофизика, 61 (1), 201 (2016).
  2. J. L. Phillips, N. P. Singh, and H. Lay, Pathophysiology, 16, 79 (2009).
  3. Л. Н. Галль, Физические принципы функционирования материи живого организма (Изд-во политехн. ун-та, СПб., 2014).
  4. В. В. Новиков, В. О. Пономарев, Г. В. Новиков и др., Биофизика, 55 (4), 631 (2010).
  5. D. Lingvay, A. G. Bors, and A. M. Bors, Electrotehnica, Electronica, Automatica, 66 (2), 5 (2018).
  6. Е. Е. Текуцкая, М. Г. Барышев, Л. Р. Гусарук и Г. П. Ильченко, Биофизика, 65 (4), 664 (2020). doi: 10.31857/S0006302920040055
  7. Y. Wang, X. Liu, Y. Zhang, et al., Biol. Open, 8, bio041293 (2019). doi: 10.1242/bio.041293
  8. C. A. Buckner, A. L. Buckner, S. A. Koren, et al., PloS One, 10 (4), e0124136 (2015). doi: 10.1371/journal.pone.0124136
  9. F. Sanie-Jahromi and M. Saadat, Mol. Biol. Reports, 45, 807 (2018). doi: 10.1007/s11033-018-4223-7
  10. С. В. Смирнова, С. В. Гудков и В. И. Брусков, 8-Оксогуанин и продукты его окисления. Образование в ДНК под действием тепла, ионов уранила и гамма-излучения (Lambert Acad. Publ., Saarbrucken, 2011).
  11. Е. Б. Менщикова, В. З. Ланкин, Н. Л. Зенков и др., Окислительный стресс. Прооксиданты и антиоксиданты (Слово, М., 2006).
  12. Е. Е. Текуцкая, М. Г. Барышев, Е. Е. Тумаев и Г.П. Ильченко, Биофизика, 65 (3), 479 (2020). doi: 10.31857/S0006302920030060
  13. А. Н. Герасимов, Медицинская статистика (ООО "Медицинское информационное агентство", М., 2007).
  14. С. В. Гудков, О. Э. Карп, С. А. Гармаш и др., Биофизика, 57 (1), 5 (2012).
  15. Е. В. Немцева, О. О. Лащук и М. А. Герасимова, Биофизика, 61 (2), 231 (2016).
  16. Д. Н. Буторина, А. А. Красновский мл. и А. В. Приезжев, Биофизика, 48 (2), 201 (2003).
  17. С. В. Гудков, О. Э. Карп, С. А. Гармаш и др., Биофизика, 57 (1), 5 (2012).
  18. С. В. Авакян и Л. А. Баранова, Биофизика, 64 (1), 12 (2019).
  19. Л. В. Беловолова, Оптика и спектроскопия, 128 (7), 923 (2020).
  20. Н. Л. Лаврик и Н. М. Бажин, Биофизика, 56 (3), 574 (2011).
  21. В. О. Пономарев и В. В. Новиков, Биофизика, 54 (2), 235 (2009).
  22. Т. И. Трофимова, Курс физики. Учебное пособие для вузов (Издательский центр "Академия", М., 2006).
  23. А. Л. Бучаченко, Успехи химии, 83 (1), 1 (2014).
  24. Ю. В. Цейслер, В. С. Мартынюк, А. Ю. Артеменко и Н. С. Мирошниченко, Физика живого, 17 (1), 94 (2009).
  25. Е. В. Рубцова, А. Б. Соловей и В. И. Лобышев, Биофизика, 59 (6), 1071 (2014).
  26. Е. Е. Текуцкая, Л. Р. Гусарук и Г. П. Ильченко, Биофизика, 67 (1), 113 (2022). doi: 10.31857/S0006302922010112
  27. Е. Е. Текуцкая, И. С. Рябова, С. В. Козин и др., Бюл. эксперим. биологии и медицины, 172 (11), 602 (2021). doi: 10.47056/0365-9615-2021-172-11602-606

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».