Impact of electrochemically activated water solution on plant polysaccharides: phenomenology and spectrophotometry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The determination of changes in the properties of polysaccharides in electrochemically activated water solution were carried out by means of UV-Vis spectrophotometry, time-of-flight secondary ion mass spectrometry and scanning electron microscopy. It was shown how the properties of samples analyzed (agar, modified starch, edible starch) changed depending on a fraction of electrochemically activated water solution (catholyte/anolyte). Our findings demonstrate that the determined changes can be valuable information in designing novel approaches to managing the properties of biological raw material used for food manufacturing process. Furthermore, the technology of electrochemically activated water solutions is a suitable green chemical process that can be translated to industrial level.

About the authors

A. G Pogorelov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: agpogorelov@rambler.ru
Pushchino, Moscow Region, Russia

L. G Ipatova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

A. I Panait

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

M. A Pogorelova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

A. A Gulin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Moscow, Russia

V. N Pogorelova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

References

  1. В. М. Бахир, Электрохимическая активация: изобретения, техника, технологии (Вива-Стар, М., 2014).
  2. V. M. Bakhir and A. G. Pogorelov, Int. J. Pharm. Res. Allied Sci., 7, 41 (2018).
  3. К. Chyer, H. Yen-Con, and R. E. Brackett, J. Food Protection, 63, 19 (2000).
  4. T. Takenouchi and S. Wakabayashi, J. Appl. Electrochem., 36, 1127 (2006).
  5. Патент RU 2130472, Способ производства красителя из шелухи лука (1999).
  6. Патент RU 2372399, Способ извлечения виннокислых соединений из виноградных выжимок (2009).
  7. Патент RU 2197840, Способ получения альгиновой кислоты и альгината натрия из бурых водорослей (2003).
  8. A. Gerzhova, M. Benali, M. Mondor, and M. Aider, Food Biosci., 11, 56 (2015).
  9. Z. H. Li, B. Zhou, X. T. Li, and S. G. Li, Food Sci. Biotechnol., 28, 15 (2018).
  10. Н. В. Науменко, Дис.. канд. техн. наук (М., 2007).
  11. K. Kobayashi, N. Tosa, Y. Hara, and S. Horie, Nippon Shokuhin Kagayu Kogaku Kaisha, 43, 930 (1996).
  12. R. Onishi, Y. Hara, and E. Arai, Food Sci. Technol. Res., 5, 388 (1999).
  13. Патент US 6326048, Preparation method of dough for flour foods (2001).
  14. С. Н. Храпенков, М. В. Гернет, Д. А. Свиридов и др., Пиво и напитки, 4, 18 (2003).
  15. Б. В. Кругликов, М. В. Гернет и И. В. Козлов, Пиво и напитки, 5, 36 (2008).
  16. С. Н. Храпенков, М. В. Гернет и В. М. Бахир, Пиво и напитки, 5, 20 (2002).
  17. M. S. Wagner and D. G. Castner, Langmuir, 17, 4649 (2001).
  18. D. J. Graham, M. S. Wagner, and D. G. Castner, Appl. Surf. Sci., 252, 6860 (2006).
  19. D. J. Graham and D. G. Castner, Biointerphases, 7, 49 (2012).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies