Composition and mitogenic activity of polysaccharide from Solanum tuberosum L.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Solanum tuberosum polysaccharide (STP) was isolated from the water extract of Solanum tuberosum L. and purified by ion-exchange and gel-filtration chromatography. Its molecular weight was determined by using gel permeation chromatography method and high performance liquid chromatography technique and its monosaccharide composition was analyzed using high performance liquid chromatography and gas chromatography with a flame ionization detector and a capillary column. It was shown that STP was consisted of galactose (Gal) and arabinose (Ara) (37.5 and 23.5%, respectively), along with uronic acids (9.7%), glucose monosaccharide residues (15%) and proteins (no less than 9%). The molecular weight of STP was 70 kDa. The Fourier-transform infrared technique was used for structural analysis of STP. The mitogenic activity of extracted polysaccharide is comparable to that of lipopolysaccharide.

About the authors

E. A Generalov

Lomonosov Moscow State University;I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University)

Moscow, Russia

L. V Yakovenko

Lomonosov Moscow State University

Moscow, Russia

References

  1. M. E. Camire, S. Kubow, and D. J. Donnelly, Crit. Rev. Food Sci. Nutr., 49 (10), 823 (2009).
  2. M. Kujawska, A. Olejnik, G. Lewandowicz, et al., Nutrients, 10 (2), 259 (2018).
  3. J. E. Vlachojannis, M. Cameron, and S. Chrubasik, Phytother. Res., 24 (2), 159 2010.
  4. H. Chen, J. Sun, J. Liu, et al., Int. J. Biol. Macromol., 131, 484 (2019).
  5. S. Chrubasik, T. Boyko, Y. Filippov, and T. Torda, Phytomedicine, 13 (8), 596 (2006).
  6. M. G. Basilicata, G. Pepe, S. F. Rapa, et al., Int. J. Mol. Sci., 20 (23), 6087 (2019).
  7. W. G. Jardine, C. H. L. Doeswijk-Voragen, I. M. R. MacKinnon, et al., J. Sci. Food Agric., 82 (8), 834 (2002).
  8. D. T. Do, J. Singh, I. Oey, and H. Singh. Food Hydrocolloids, 108, 105972 (2020).
  9. M. C. Jarvis, M. A. Hall, D. R. Threlfall, J. Friend, Planta, 152 (2), 93 (1981).
  10. A. I. Usov, M. I. Bilan, and N. G. Klochkova, Botanica Marina, 38, 43 (1995).
  11. M. M. Bradford, Anal. Biochem., 72 (1-2), 248 (1976).
  12. R. Hori and J. Sugiyama, Carbohydr. Polym., 52 (4), 449 (2003).
  13. N. K. Jerne, A. A. Nordin, Science. 140 (3565), 405 (1963).
  14. W. S. York, A. G. Darvill, M. McNeil, et al., in Methods in Enzymology, vol. 118, Plant Molecular Biology, Ed. by A. Weissbach and H. Weissbach (Acad. Press, London, New York, San Diego, 1986), pp. 3-40.
  15. C. C. Sweeley, R. V. P. Tao, in Methods in Carbohydrate Chemistry, Ed. by R. L. Whistler (Acad. Press, London, New York, San Diego, 1972), pp. 23-25.
  16. C. C. Sweeley, R. Bentley, M. Makita, and W. W. Wells, J. Am. Chem. Soc., 85 (16), 2497 (1963).
  17. M. DuBois, K. A. Gilles, J. K. Hamilton, et al., Anal. Chem., 28 (3), 350 (1956).
  18. K. Wilson, and J. Walker, Principles and Techniques of Practical Biochemistry (Cambridge University Press, Cambridge, 2000).
  19. M. Cerna, A. S. Barros, A. Nunes, et al., Carbohydr. Polym., 51 (4), 383 (2003).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies