Cartesian genetic programming for image analysis of the developing drosophila eye

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Automatic feature extraction methods have gained increasing attention in modern image processing. The confocal images of the single-layered epithelium of the developing Drosophila eye may form an excellent model system to develop methods for complex feature extraction. The aim of this work was to explore Cartesian genetic programming for determination of the boundaries of ommatidia, the light-sensitive units in the presumptive eye region. Application of Cartesian genetic programming for the analysis of Fasciclin III expression has shown good results. This opens interesting perspectives for further use of this technology in the automatic analysis of confocal images.

Авторлар туралы

N. Danilov

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

K. Kozlov

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

S. Surkova

Peter the Great St. Petersburg Polytechnic University

Email: surkova_syu@spbstu.ru
St. Petersburg, Russia

M. Samsonova

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

Әдебиет тізімі

  1. И. А. Русанова, в сб. матер. Всероссийской школы-семинара (Саратов, 01 октября 2018 г.), под ред. Д. А. Усанова (Изд-во "Саратовский источник", Саратов, 2018), сс. 78-81.
  2. К. Н. Козлов, Е. В. Голубкова, Л. А. Мамон и др., Биофизика, 67, 283 (2022). DOI: 10.31857/ S0006302922020119
  3. J. P. Kumar, Devel. Dynamics, 241, 136 (2012). doi: 10.1002/dvdy.23707
  4. S. Surkova, J. Gorne, S. Nuzhdin, et al., Devel. Biol., 476, 41 (2021). doi: 10.1016/j.ydbio.2021.03.005.
  5. J. Y. Roignant and J. E Treisman, Int. J. Devel. Biol. 53, 795 (2009). doi: 10.1387/ijdb.072483jr
  6. J. E. Treisman, Wiley Interdisc. Rev. Devel. Biol., 2, 545 (2013). doi: 10.1002/wdev.100
  7. S. Ali, S. A. Signor, K. Kozlov, et al., Evolution & Development, 21, 157 (2019). doi: 10.1111/ede.12283
  8. L. Liu, L. Shao and X. Li, Inf. Sci., 316, 567 (2015). doi: 10.1016/j.ins.2014.06.030
  9. A. Lensen, H. Al-Sahaf, M. Zhang, et al., in EuroGP 2016. LNCS, Ed. by M. I. Heywood, J. McDermott, M. Castelli et al. (Springer, Cham, 2016), v. 9594, pp. 51-67. doi: 10.1007/978-3-319-30668-1_4
  10. S.Ruberto, V. Terragni, and J. Moore, in Parallel Problem Solving from Nature. Lecture Notes in Computer Science Image Feature Learning with Genetic Programming (Springer, Cham, 2020), pp. 63-78. doi: 10.1007/978-3-030-58115-2_5
  11. C. B. Perez and G. Olague, Intell. Data Anal., 17, 561 (2013). doi: 10.3233/IDA-130594
  12. W. A. Albukhanajer and J. A. Briffa, IEEE Trans. Cybern., 45, 1757 (2015). doi: 10.1109/TCYB. 2014.2360074
  13. J. F. Miller, P. Thomson, and T.C. Fogarty, in Genetic Algorithms and Evolution Strategies in Engineering and Computer Science: Recent Advancements and Industrial Applications, Ed. by D. Quagliarella, J. Periaux, C. Poloni, and G. Winter (Wiley, 1998), pp. 105-131.
  14. M. A. Kramer, AIChE J. 37, 233 (1991). doi: 10.1002/aic.690370209
  15. A. Makhzani and B. J. Frey, in Advances in Neural Information Processing Systems, Ed. by C. Cortes, N. Lawrence, D. Lee, et al. (2015), pp. 2791-2799
  16. P. Vincent, H. Larochelle, Y. Bengio, et al., in Proc.Int. Conf. on Machine Learning, ICML 2008 (2008). pp. 1096-1103. doi: 10.1145/1390156.1390294
  17. P. M. Snow, A. J. Bieber, and C. S. Goodman, Cell, 59, 313 (1989). doi: 10.1016/0092-8674(89)90293-6
  18. K. Kozlov, A. Pisarev, J. Kaandorp, et al., in Abstr. Bookof the 9th Int. Conf. Syst. Biol. (Goteborg, 2008), p. 191.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».