Effects of ionizing radiation on radio sensitivity of cell nuclei of wheat seedlings

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Effects of the 50 Gy and 100 Gy doses of Y-irradiation on radiosensitivity of cell nuclei of soft dwarf wheat seedlings were studied. Changes in the biochemical composition of the nuclear fractions of seedlings of wheat seeds exposed to gamma-irradiation were determined. After exposure to ionizing radiation, total protein and nucleic acids levels appeared to be greater in the soluble nuclear fraction and the nuclear membrane-associated DNA content and proteins increased. It was also found that the value of the dzeta-potential of isolated nuclei of seedlings of irradiated seeds decreased in a static electric field. Changes in the surface charge of the nucleus lead to a violation of its functional activity, since the surface charge of the nuclei is necessary for the normal functioning and regulation of the nuclear-cytoplasmic transport of macromolecules. Exposure to radiation causes destruction of ionogenic groups of molecules of the nuclear membrane, leading to a decrease in the electronegativity of the nuclei, which, in turn, entails a change in the functional activity of the nucleus. The results obtained show that changes in electronegativity and in the content of nuclear fractions are directly dependent on the dose of ionizing radiation. It can be concluded that Y-irradiation in a range from 50 to 100 Gy had beneficial effects on metabolic and proliferative activities of soft wheat cells.

About the authors

L. A Minasbekyan

Yerevan State University, Research Institute of Biology

Email: minlia@ysu.am
Yerevan, Armenia

I. A Avagyan

Yerevan State University, Research Institute of Biology

Yerevan, Armenia

References

  1. J. Wang, H. Ma, and Sh. Wang, Food Sci. Technol. Res., 25 (4), 489 (2019).
  2. A. M. Khaneghah, M. H. Moosavi, C. A. F. Oliveira, et al., Food Chem. Toxicol., 143, 111557 (2020).
  3. P. Yu. Volkova, E.V. Bondarenko, and E. A. Kazakova, Curr. Opin. Toxicol., 30, 100334 (2022).
  4. L. A. Minasbekyan, Proc. YSU, 56 (3) (2023).
  5. НРБ-99/2009 - интернет ресурс: https://files.stroy-inf.ru/Data1/56/56325/index.htm
  6. L. J. Colwell, M. P. Brenner, and K. Ribbeck, PLoS Comput. Biol., 6 (4), e1000747 (2010).
  7. Л. А. Минасбекян и А. В. Неркарарян, Биофизика, 67 (6), 1131 (2022).
  8. В. Г. Шахбазов, Экологическая и биофизическая генетика: Избранные труды, под ред. В. Чешко (Штрих, Харьков, 2001).
  9. S. Kimura, J. Shibato, G. K. Agrawal, et al., Rice Genet. Newsl., 24, 52 (2008).
  10. H. Liu, H. Li, G. Yang, et al., Postharvest Biol. Technol., 172, 111380 (2021).
  11. R. S. Hanafy and S. A. Akladious, J. Genetic Engineer. Biotechnol., 16, 683 (2018).
  12. G. Singh, P. Pal, M. Masand, et al., Plant Physiol. Biochem., 148, 90 (2020).
  13. D. S. Kim, J. B. Kim, E. J. Goh, et al., J. Plant Physiol., 168, 1960 (2011).
  14. K. Kawamura, F. Qi, and J. Kobayashi, J. Rad. Res., 59 (2), ii91 (2018).
  15. N. Caplin and N. Willey, Front. Plant Sci., 9, 847 (2018).
  16. S. S. Patel, B. J. Belmont, J. M. Sante, and M. F. Rexach, Cell, 129, 83 (2007).
  17. P. Upla, S. J. Kim, M. P. Rout, and J. Fernandez-Martinez, Structure, 25, 434 (2017).
  18. J. Lu, T. Wu, B. Zhang, et al., Cell Commun. Signal., 19, 60 (2021).
  19. Y. Ma, K. Poole, J. Goyette, and K. Gaus, Front. Immunol., 8, 1513 (2017).
  20. S. Bhattacharjee, J. Controlled Release, 235, 337 (2016).
  21. X-J. Du, Ji-L. Wang, Sh. Iqbal, et al., Biomater. Sci., 6, 642 (2018).
  22. L. A. Minasbekyan, Zh. V. Yavroyan, et al., Russ. J. Plant Physiol., 55 (3), 412 (2008).
  23. L. A. Minasbekyan, S. A. Gonyan, M. A. Parsadanyan, and P. O. Vardevanyan, Russ. J. Plant Physiol., 49 (2), 250 (2002).
  24. А. Г. Варехов, Научное приборостроение, 27 (2), 21 (2017).
  25. L. A. Minasbekyan and I. A. Avagyan, Proc. YSU, 55 (2), 165 (2021).
  26. E. vоn Well, A. Fossey, and M. Booyse, J. Radiat. Res. Appl. Sci., 11, 75 (2018).
  27. E. von Well, M. Booyse, and A. Fossey, Protoplasma, 11, 75 (2021).
  28. R. R. Sadoyan and L. A. Minasbekyan, Ann. Agrar. Sci., 8 (2), 32 (2010).
  29. A. Majeed, Z. Muhammad, R. Ullah, and H. Ali, Pak. J. Bot., 50 (6), 2449 (2018).
  30. P. M. Mullineaux, M. Exposito-Rodriguez, P. P. Laissue, et al., Phil. Trans. R. Soc. B, 375, 20190405 (2020).
  31. S. Oney-Birol and A. Balkan, Pak. J. Bot., 51 (3), 887 (2019).
  32. J. E. Hwang, S. G. Hwang, S. H. Kim, et al., Physiol. Plant., 150, 604 (2014).
  33. Y. Matsumoto, S. Imamichi, M. Fukuchi, et al., In: New Research Directions in DNA Repair, Ed. by C. Chen (InTech, 2013).
  34. J. A. Talamas and M. Capelson, Front. Genet., 6, 95 (2015)
  35. J. Carvalho, Sci. Rep., 12 (9), 206 (2022).
  36. J. L. Whited and M. Levin, Curr. Opin. Genet. Dev., 57, 61 (2019).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies