Simulation modeling of glutamate cysteine ligase activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

L-Y-glutamyl-L-cysteinyl glycine, or glutathione, as one of the basic intracellular antioxidants, plays a vital role in cellular metabolism. In mammalian cells, glutathione is synthesized via two steps. The first step that is considered rate limiting is catalyzed by glutamate cysteine ligase. In this work, a stochastic algorithm based on continuous-time Markov chains was used to simulate the activity of glutamate-cysteine ligase. Several different mechanisms of enzymatic activity including reversible inhibition of glutathione, and an ATP binding motif have been considered. Based on physiological metabolite measurements made for human erythrocytes, the activity of glutamate cysteine ligase was determined. There are many possible ways for substrates to bind to an active site of the studied enzyme, but, only the mechanism by which primary binding to ATP can occur makes it possible to obtain the catalytic rate value similar to that of the experimentally measured glutamatecysteine ligase activity relative to physiological concentrations of substrates. In other cases, the values differ by more than one order of magnitude. The performed analysis allows the conclusion that when models for glutathione biosynthesis are constructed in vivo conditions, the ATP concentration and reversible inhibition of glutathione should be taken into account.

About the authors

V. S Kopylova

Institute of Cytochemistry and Molecular Pharmacology

Email: kopilova.veronika@yandex.ru
Moscow, Russia

S. E Boronovskiy

Institute of Cytochemistry and Molecular Pharmacology

Moscow, Russia

Ya. R Nartsissov

Institute of Cytochemistry and Molecular Pharmacology;BiDiPharma GmbH

Moscow, Russia;Siek, Germany

References

  1. A. A. Korneev, I. A. Komissarova, and Y. R. Nartsissov, Bull. Exp. Biol. Med., 116, 1089 (1993).
  2. В. И. Скворцова, Я. Р. Нарциссов, М. К. Бодыхов и др., Журн. неврологии и психиатрии им. С.С. Корсакова, 107, 30 (2007).
  3. Y. R. Nartsissov, Biochem. Soc. Trans., 45 (5), 1097 (2017).
  4. R. Dringen, Progr. Neurobiol. 62 (6), 649 (2000).
  5. Л. П. Смирнов и И. В. Суховская, Учен. зап. Петрозавод. гос. ун-та, 6 (143), 34 (2014).
  6. M. Deponte, Antioxid. Redox Signal., 27 (15), 1130 (2017).
  7. V. I. Kulinskii and L. S. Kolesnichenko, Biomed. Khim., 55 (3), 255 (2009).
  8. K. Chik, F. Flourie, K. Arab, et al., J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci., 827 (1), 32 (2005).
  9. Y. Yang, E. D. Lenherr, R. Gromes, et al., Biochem. J., 476 (7), 1191 (2019).
  10. R. Njalsson, Cell Mol. Life Sci., 62 (17), 1938 (2005).
  11. H. Zhang and H. J. Forman, Semin. Cell Dev. Biol., 23 (7), 722 (2012).
  12. A. Dinescu, M. E. Anderson, and T. R. Cundari, Biochem. Biophys. Res.Commun., 353 (2), 450 (2007).
  13. M. Grant, F. H. MacIver, and I. W. Dawes, Mol. Biol. Cell., 8 (9), 1699 (1997).
  14. K. Bachhawat and S. Yadav, IUBMB Life, 70 (7), 585 (2018).
  15. V. I. Kulinskii and L. S. Kolesnichenko, Biomed. Khim., 55 (4), 365 (2009).
  16. A. Meister and M. E. Anderson, Annu. Rev. Biochem., 52, 711 (1983).
  17. T. W. Sedlak, B. D. Paul, G. M. Parker, et al., Proc. Natl. Acad. Sci. USA, 116 (7), 2701 (2019).
  18. О. А. Борисенок, М. И. Бушма, О. Н. Басалай и др., Мед. новости, 7 (298), 3 (2019).
  19. G. E. van Buskirk, J. E. Gander, and W. B. Rathbun, Eur. J. Biochem., 85 (2), 589 (1978).
  20. B. Yip and F. B.Rudolph, J. Biol. Chem., 251 (12), 3563 (1976).
  21. D. L. Brekken and M. A. Phillips, J. Biol. Chem., 273 (41), 26317 (1998).
  22. G. Mendoza-Cozatl and R. Moreno-Sanchez, J. Theor. Biol., 238 (4), 919 (2006).
  23. M. C. Reed, R. L. Thomas, J. Pavisic, et al., Theor. Biol. Med. Model., 5, 8 (2008).
  24. J. E. Raftos, S. Whillier, and P. W. Kuchel, J. Biol. Chem., 285 (31), 23557 (2010).
  25. J. M. Jez, R. E. Cahoon, and S. Chen, J. Biol. Chem., 279 (32), 33463 (2004).
  26. M. Orlowski and A. Meister, Biochemistry, 10 (3), 372 (1971).
  27. V. Y. Titova, S. E. Boronovskiy, J. P. Mazat, et al., J. Physics: Conf. Series, 1141, 012029 (2018).
  28. E. Mashkovtseva, S. Boronovsky, and Y. Nartsissov, Math. Biosci., 243 (1), 117 (2013).
  29. N. V. Kazmiruk, S. E. Boronovskiy, and Y. R. Nartsissov, Biophysics, 63 (3), 318 (2018).
  30. O. A. Zagubnaya, S. Boronovskiy, and Y. R. Nartsissov, J. Physics: Conf. Series, 1141, (2018).
  31. O. W. Griffith and R. T. Mulcahy, Adv. Enzymol. Relat. Areas Mol. Biol., 73, 209 (1999).
  32. R. Quintana-Cabrera, S. Fernandez-Fernandez, V. Bobo-Jimenez, et al., Nat.Commun., 3, 718 (2012).
  33. Z. Tu and M. W. Anders, Arch. Biochem. Biophys., 354 (2), 247 (1998).
  34. M. N. Willis, Y. Liu, E. I. Biterova, et al., Biochemistry, 50 (29), 6508 (2011).
  35. Y. Chen, H. G. Shertzer, S. N. Schneider, et al., J. Biol. Chem., 280 (40), 33766 (2005).
  36. O. W. Griffith, Free Radic. Biol. Med., 27 (9-10), 922 (1999).
  37. K. Kiessling, N. Roberts, J. S. Gibson, et al., Hematol. J., 1 (4), 243 (2000).
  38. D. Darmaun, S. D. Smith, S. Sweeten, et al., Diabetes, 54 (1), 190 (2005).
  39. E. Skotnicka, I. Baranowska-Bosiacka, W. Dudzinska, et al., Biology of Sport, 25 (1), 35 (2008).
  40. J. C. Divino Filho, S. J. Hazel, P. Furst, et al., J. Endocrinol., 156 (3), 519 (1998).
  41. Y. Xiong, Y. Xiong, Y. Wang, et al., Cell Physiol. Biochem., 51 (5), 2172 (2018).
  42. G. Noctor, A.-C. M. Arisi, L. Jouanin, et al., Physiol. Plantarum, 100 (2), 255 (1997).
  43. A. Kuster, I. Tea, S. Sweeten, et al., Anal. Bioanal. Chem., 390 (5), 1403 (2008).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies