Имитационное моделирование работы глутамат-цистеин лигазы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Глутатион (Y-глутамил-цистеинил-глицин) - один из основных внутриклеточных антиоксидантов, играющих важную роль в клеточном обмене. В клетках млекопитающих глутатион синтезируется в две стадии, первая из которых катализируется глутамат-цистеин лигазой и является лимитирующей. В данной работе стохастический алгоритм на основе марковских цепей с непрерывным временем был использован для моделирования работы глутамат-цистеин лигазы. Было рассмотрено несколько механизмов работы, учитывающих обратное ингибирование глутатионом, а также порядок присоединения АТФ. На основании физиологических концентраций участвующих в реакции метаболитов была рассчитана скорость работы глутамат-цистеин лигазы эритроцитов человека. Среди возможных вариантов присоединения субстратов в активный центр исследуемого фермента только механизм, предусматривающий первичное связывание с АТФ, позволяет получить значение для скорости реакции, соответствующее экспериментальной измеренной активности глутамат-цисте-ин лигазы при физиологических уровнях субстратов. В случае других схем присоединения субстратов различие значений скорости составляет более порядка. Проведенный анализ позволяет сделать вывод о том, что при моделировании биосинтеза глутатиона в условиях in vivo необходимо учитывать как концентрацию молекул АТФ, так и обратное ингибирование глутатионом.

Об авторах

В. С Копылова

НИИ цитохимии и молекулярной фармакологии

Email: kopilova.veronika@yandex.ru
Москва, Россия

С. Е Бороновский

НИИ цитохимии и молекулярной фармакологии

Москва, Россия

Я. Р Нарциссов

НИИ цитохимии и молекулярной фармакологии;BiDiPharma GmbH

Москва, Россия;Siek, Germany

Список литературы

  1. A. A. Korneev, I. A. Komissarova, and Y. R. Nartsissov, Bull. Exp. Biol. Med., 116, 1089 (1993).
  2. В. И. Скворцова, Я. Р. Нарциссов, М. К. Бодыхов и др., Журн. неврологии и психиатрии им. С.С. Корсакова, 107, 30 (2007).
  3. Y. R. Nartsissov, Biochem. Soc. Trans., 45 (5), 1097 (2017).
  4. R. Dringen, Progr. Neurobiol. 62 (6), 649 (2000).
  5. Л. П. Смирнов и И. В. Суховская, Учен. зап. Петрозавод. гос. ун-та, 6 (143), 34 (2014).
  6. M. Deponte, Antioxid. Redox Signal., 27 (15), 1130 (2017).
  7. V. I. Kulinskii and L. S. Kolesnichenko, Biomed. Khim., 55 (3), 255 (2009).
  8. K. Chik, F. Flourie, K. Arab, et al., J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci., 827 (1), 32 (2005).
  9. Y. Yang, E. D. Lenherr, R. Gromes, et al., Biochem. J., 476 (7), 1191 (2019).
  10. R. Njalsson, Cell Mol. Life Sci., 62 (17), 1938 (2005).
  11. H. Zhang and H. J. Forman, Semin. Cell Dev. Biol., 23 (7), 722 (2012).
  12. A. Dinescu, M. E. Anderson, and T. R. Cundari, Biochem. Biophys. Res.Commun., 353 (2), 450 (2007).
  13. M. Grant, F. H. MacIver, and I. W. Dawes, Mol. Biol. Cell., 8 (9), 1699 (1997).
  14. K. Bachhawat and S. Yadav, IUBMB Life, 70 (7), 585 (2018).
  15. V. I. Kulinskii and L. S. Kolesnichenko, Biomed. Khim., 55 (4), 365 (2009).
  16. A. Meister and M. E. Anderson, Annu. Rev. Biochem., 52, 711 (1983).
  17. T. W. Sedlak, B. D. Paul, G. M. Parker, et al., Proc. Natl. Acad. Sci. USA, 116 (7), 2701 (2019).
  18. О. А. Борисенок, М. И. Бушма, О. Н. Басалай и др., Мед. новости, 7 (298), 3 (2019).
  19. G. E. van Buskirk, J. E. Gander, and W. B. Rathbun, Eur. J. Biochem., 85 (2), 589 (1978).
  20. B. Yip and F. B.Rudolph, J. Biol. Chem., 251 (12), 3563 (1976).
  21. D. L. Brekken and M. A. Phillips, J. Biol. Chem., 273 (41), 26317 (1998).
  22. G. Mendoza-Cozatl and R. Moreno-Sanchez, J. Theor. Biol., 238 (4), 919 (2006).
  23. M. C. Reed, R. L. Thomas, J. Pavisic, et al., Theor. Biol. Med. Model., 5, 8 (2008).
  24. J. E. Raftos, S. Whillier, and P. W. Kuchel, J. Biol. Chem., 285 (31), 23557 (2010).
  25. J. M. Jez, R. E. Cahoon, and S. Chen, J. Biol. Chem., 279 (32), 33463 (2004).
  26. M. Orlowski and A. Meister, Biochemistry, 10 (3), 372 (1971).
  27. V. Y. Titova, S. E. Boronovskiy, J. P. Mazat, et al., J. Physics: Conf. Series, 1141, 012029 (2018).
  28. E. Mashkovtseva, S. Boronovsky, and Y. Nartsissov, Math. Biosci., 243 (1), 117 (2013).
  29. N. V. Kazmiruk, S. E. Boronovskiy, and Y. R. Nartsissov, Biophysics, 63 (3), 318 (2018).
  30. O. A. Zagubnaya, S. Boronovskiy, and Y. R. Nartsissov, J. Physics: Conf. Series, 1141, (2018).
  31. O. W. Griffith and R. T. Mulcahy, Adv. Enzymol. Relat. Areas Mol. Biol., 73, 209 (1999).
  32. R. Quintana-Cabrera, S. Fernandez-Fernandez, V. Bobo-Jimenez, et al., Nat.Commun., 3, 718 (2012).
  33. Z. Tu and M. W. Anders, Arch. Biochem. Biophys., 354 (2), 247 (1998).
  34. M. N. Willis, Y. Liu, E. I. Biterova, et al., Biochemistry, 50 (29), 6508 (2011).
  35. Y. Chen, H. G. Shertzer, S. N. Schneider, et al., J. Biol. Chem., 280 (40), 33766 (2005).
  36. O. W. Griffith, Free Radic. Biol. Med., 27 (9-10), 922 (1999).
  37. K. Kiessling, N. Roberts, J. S. Gibson, et al., Hematol. J., 1 (4), 243 (2000).
  38. D. Darmaun, S. D. Smith, S. Sweeten, et al., Diabetes, 54 (1), 190 (2005).
  39. E. Skotnicka, I. Baranowska-Bosiacka, W. Dudzinska, et al., Biology of Sport, 25 (1), 35 (2008).
  40. J. C. Divino Filho, S. J. Hazel, P. Furst, et al., J. Endocrinol., 156 (3), 519 (1998).
  41. Y. Xiong, Y. Xiong, Y. Wang, et al., Cell Physiol. Biochem., 51 (5), 2172 (2018).
  42. G. Noctor, A.-C. M. Arisi, L. Jouanin, et al., Physiol. Plantarum, 100 (2), 255 (1997).
  43. A. Kuster, I. Tea, S. Sweeten, et al., Anal. Bioanal. Chem., 390 (5), 1403 (2008).

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах