Paracrine effects of stem cell conditioned medium on production of oxygen reactive species in blood neutrophils in acetaminophen-induced liver failure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The current study examined the effects of mesenchymal stem cells-derived conditioned medium on the severity of systemic inflammatory response induced by the administration of acetaminophen, as well as its long-term effects on hepatic tissues. A conditioned medium fraction ˂30 кDа showed maximum protective effect. Proteins of this fraction reduce the degree of systemic inflammatory response and liver tissue fibrosis long after the toxin administration. Liver tissues from experimental animals were examined, and a correlation between the reduction of granulocytic infiltration scoring and the degree hepatic parenchymal necrosis was demonstrated (confirmed by the cytolytic enzyme level). The ˂30 кDа fraction increased the spontaneous but decreased phobrol-12-myristate-13-acetate-induced intracellular production of reactive oxygen species. Results from this study show that the level of macrophage migration inhibitory factor and expression of thioredoxin significantly increase as compared to controls during increased spontaneous production of reactive oxygen species in neutrophils.

About the authors

A. A Temnov

Institute of Cell Biophysics, Russian Academy of Sciences;Moscow Institute of Physics and Technology

Pushchino, Moscow Region, Russia, Dolgoprudny, Moscow Region, Russia

A. N Sklifas

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia, Dolgoprudny, Moscow Region, Russia

V. K Zhalimov

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia, Dolgoprudny, Moscow Region, Russia

M. G Sharapov

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia, Dolgoprudny, Moscow Region, Russia

R. S Fadeev

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

M. I Kobyakova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

N. I Kukushkin

Institute of Cell Biophysics, Russian Academy of Sciences

Email: nikukushkin@mail.ru
Pushchino, Moscow Region, Russia, Dolgoprudny, Moscow Region, Russia

K. A Rogov

Research Institute of Human Morphology

Moscow, Russia

References

  1. A. M. Larson, Clin. Liver Dis., 11, 525 (2007).
  2. M. R. McGill, M. R. Sharpe, C. D. Williams, et al., J. Clin. Invest., 122, 1574 (2012).
  3. H. Jaeschke, C. D. Williams, A. Ramachandran, et al., Liver Int., 32, 8 (2012).
  4. Y. Ishida, T. Kondo, A. Kimura, et al., Eur. J. Immunol., 36, 1028 (2006).
  5. Z. X. Liu, D. Han, B. Gunawan, et al., Hepatology, 43, 1220 (2006).
  6. P. E. Marques, S. S. Amaral, D. A. Pires, et al., Hepatology, 56, 1971 (2012).
  7. C. Cover, J. Liu, A. Farhood, et al., Toxicol. Appl. Pharmacol., 216, 98 (2006).
  8. H. S. Hou, C. L. Liao, H. K. Sytwu, et al., PLoS One, 7, e44880 (2012).
  9. J. A. Lawson, A. Farhood, R. D. Hopper, et al., Toxicol. Sci., 54, 509 (2000).
  10. C. D. Williams, M. L. Bajt, A. Farhood, et al., Liver Int., 30, 1280 (2010).
  11. C. D. Williams, M. L. Bajt, M. R. Sharpe, et al., Toxicol. Appl. Pharmacol., 275 (2), 122 (2014).
  12. C. D. Williams, A. Farhood, and H. Jaeschke, Toxicol. Appl. Pharmacol., 247, 169 (2010).
  13. J. X. Wang, C. Zhang, L. Fu, et al., Toxicol. Lett., 265, 38 (2017).
  14. W. Yang, Y. Tao, Y. Wu, et al., Nat. Commun., 10 (1), 1076 (2019).
  15. A. Temnov, K. Rogov, V. Zhalimov, et al., Hepat. Med., 11, 89 (2019).
  16. A. A. Temnov, K. A. Rogov, A. N. Sklifas, et al., Mol. Biol. Rep., 46 (3), 3101 (2019).
  17. H. Yagi, A. Soto-Gutierrez, N. Navarro-Alvarez, et al., Mol. Therapy, 18 (10), 1857 (2010).
  18. F. A. von Meijenfeldt, L. C. Burlage, S. Bos, et al., Liver Transpl., 24 (12), 1716 (2018).
  19. T. D. Schmittgen and K. J. Livak, Nat. Protoc., 3 (6), 1101 (2008).
  20. J. Almkvist, C. Dahlgren, H. Leffler, et al., J. Immunol., 168 (8), 4034 (2002).
  21. M. T. Elola, M. E. Chiesa, and N. E. Fink, Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 141 (1), 23 (2005).
  22. J. Liu, M. Jiang, Q. Jin et al., Front. Pharmacol., 12, 723881 (2021).
  23. F. A. von Meijenfeldt, R. T. Stravitz, J. Zhang, et al. Hepatology, 75 (3), 623 (2022).
  24. R. D. Gray, C. D. Lucas, A. MacKellar, et al., J. Inflamm. (Lond.), 10 (1), 12 (2013).
  25. B. Saberi, M. Shinohara, M. D. Ybanez, et al., Am. J. Physiol. Cell Physiol., 295 (1), C50 (2008)
  26. B. Saberi, M. D. Ybanez, H. S. Johnson, et al., Hepatology, 59 (4), 1543 (2014).
  27. B. W. Lee, B. S. Jeon, and B. I. Yoon, J. Appl. Toxicol., 38 (7), 1008 (2018).
  28. T. Shimizu, R. Abe, H. Nakamura, at al., Biochem Biophys Res Commun., 264 (3), 751 (1999).
  29. A. Kudrin and D. Ray, Immunol. Cell Biol., 86 (3), 232 (2008).
  30. H. Lue, R. Kleemann, T. Calandra, et al., Microbes Infect., 4, 449 (2002).
  31. J. Yodoi, H. Nakamura, and H. Masutani, Biol. Chem., 383, 585 2002.
  32. A. Novak, G. D. Carpini, M. L. Ruiz, et al., J. Pharm. Sci., 102 (10), 3830 (2013).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies