Mechanism of inhibition of the oxygen-evolving complex of photosystem II by lanthanide cations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The process of the interaction of La3+and Tb3+ cations with the Ca-binding site of the oxygen-evolving complex of photosystem II samples depleted of calcium has been studied. The binding of cations to the Ca-binding site is irreversible and the bound cations cannot be washed out or replaced by Ca2+ cation. A feature of lanthanides to bind strongly to the Ca-binding site has been used to investigate if the bound Ln3+ cation has an effect on the high-affinity Mn-binding site of the oxygen-evolving complex. Therefore, in this work, hydroquinone was used for the extraction of manganese cations from the oxygen-evolving complex of the calcium-depleted photosystem II membranes with the Ca-binding site blocked by La3+ or Tb3+ and the activity of the high-affinity site was then examined using exogenous electron donors (Mn2+ + H2O2) and 1,5-di-phenylcarbazide. It was found that lanthanide cation bound to the Ca-binding site can significantly inhibit the oxidation rates of electron donors through the high-affinity Mn-binding site. The mechanism of the observed effect is discussed.

About the authors

E. R Lovyagina

Lomonosov Moscow State University

Email: elena.lovyagina@gmail.com
Moscow, Russia

A. V Loktyushkin

Lomonosov Moscow State University

Email: elena.lovyagina@gmail.com
Moscow, Russia

N. S Vasiliev

Lomonosov Moscow State University

Email: elena.lovyagina@gmail.com
Moscow, Russia

B. K Semin

Lomonosov Moscow State University

Author for correspondence.
Email: elena.lovyagina@gmail.com
Moscow, Russia

References

  1. Y. Umena, K. Kawakami, J.-R. Shen, et al., Nature, 473, 55 (2011). doi: 10.1038/nature09913
  2. M. Suga, F. Akita, K. Hirata, et al., Nature, 517, 99 (2015). doi: 10.1038/nature13991
  3. J. P. McEvoy and G. W. Brudvig, Chem. Rev., 106(11), 4455 (2006). doi: 10.1021/cr0204294
  4. C. J. Kim and R. J. Debus, Biochemistry, 56, 2558 (2017). doi: 10.1021/acs.biochem.6b01278
  5. E. Y. Tsui, R. Tran, J. Yano, et al., Nature Chem., 5, 293 (2013). doi: 10.1038/nchem.1578
  6. M. Shamsipur and A. Pashabadi, Coord. Chem. Rev., 374, 153 (2018). doi: 10.1016/j.ccr.2018.07.006
  7. K. Saito, M. Nakagawa, M. Mandal, et al., Photosynth. Res., 148, 153(2021). doi: 10.1007/s11120-021-00846-y
  8. T. Ono and Y. Inoue, Biochim. Biophys. Acta, 1020, 269 (1990). doi: 10.1016/0005-2728(90)90157-Y
  9. T. Ono and Y. Inoue, FEBS Lett., 227, 147 (1988). doi: 10.1016/0014-5793(88)80886-X
  10. T. Ono and Y. Inoue, Biochim. Biophys. Acta, 850, 380 (1986). doi: 10.1016/0005-2728(86)90194-5
  11. J. S. Vrettos, D. A. Stone, and G. W. Brudvig, Biochemistry, 40, 7937 (2001). doi: 10.1021/bi010679z
  12. D. F. Ghanotakis, G. T. Babcock, and C. F. Yocum, FEBS Lett., 167, 127 (1984a). doi: 10.1016/0014-5793(84)80846-7
  13. D. F. Ghanotakis, G. T. Babcock, and C. F Yocum, Biochim. Biophys. Acta, 809, 173 (1985). doi: 10.1016/0005-2728(85)90060-X
  14. T. Ono, J. Inorg. Biochem., 82, 85 (2000). doi: 10.1016/S0162-0134(00)00144-6
  15. C. M. Waggoner and C. F Yocum, in: Current Research in Photosynthesis, Ed. by M. Baltscheffsky (Springer, Dordrecht, Netherlands, 1990), pp. 733-736. doi: 10.1007/978-94-009-0511-5_167
  16. M. Epstein, J. Reuben, and A. Levitzki, Biochemistry, 16, 2449 (1977).
  17. E. R. Lovyagina, A. V. Loktyushkin, and B. K. Semin, J. Biol. Inorg. Chem., 26, 1 (2021). doi: 10.1007/s00775-020-01832-w
  18. D. F Ghanotakis and G. T. Babcock, FEBS Lett., 153, 231 (1983). doi: 10.1016/0014-5793(83)80154-9
  19. R. J. Porra, W. A. Tompson, and P. E. Kriedemann, Biochim. Biophys. Acta, 975, 384 (1989). doi: 10.1016/S0005-2728(89)80347-0
  20. D. F. Ghanotakis, G. T. Babcock, and C. F. Yocum, Biochim. Biophys. Acta, 765, 388 (1984б). doi: 10.1016/0005-2728(84)90180-4
  21. Q. Xu and T. M. Bricker, J. Biol. Chem., 267, 25816 (1992). doi: 10.1016/S0021-9258(18)35683-7
  22. J. M. Armstrong, Biochim. Biophys. Acta, 86, 194 (1964). doi: 10.1016/0304-4165(64)90180-1
  23. B. K. Semin, L. N. Davletshina, and A. B.Rubin, Photosynth. Res., 125, 95 (2015). doi: 10.1007/s11120-015-0155-4
  24. P. J. Nixon and B. A. Diner, Biochemistry, 31, 942 (1992). doi: 10.1021/bi00118a041
  25. K. A. Campbell, D. A. Force, P. J. Nixon, et al., J. Am. Chem. Soc., 122, 3754 (2000). doi: 10.1021/ja000142t
  26. B. K. Semin, M. L. Ghirardi, and M. Seibert, Biochemistry, 41, 5854 (2002). doi: 10.1021/bi0200054
  27. H. Inoue and T. Wada, Plant Cell Physiol., 28, 767 (1987). DOI: 10.1093/ oxfordjournals.pcp.a077357
  28. A. Boussac, M. Picaud, and A.-L. Etienne, Photobiochem. Photobiophys., 10, 201 (1986).
  29. B. K. Semin, L. N. Davletshina, A. Yu. Aleksandrov, et al., Biochemistry (Moscow), 69, 410 (2004). doi: 10.1023/B:BIRY.0000022066.38297.8a
  30. C. W. Hoganson, D. F. Ghanotakis, G. T. Babcock, et al., Photosynth. Res., 22, 285 (1989). doi: 10.1007/BF000 48306
  31. A.-F. Miller and G. W. Brudvig, Biochemistry, 29, 1385 (1990). doi: 10.1021/bi00458a007
  32. B. K. Semin, L. N. Davletshina, M. Seibert, et al., J. Photochem. Photobiol. B: Biology, 178, 192 (2018). doi: 10.1016/j.jphotobiol.2017.11.016
  33. V. N. Kurashov, E. R. Lovyagina, D. Yu. Shkolnikov, et al., Biochim. Biophys. Acta, 1787, 1492 (2009). doi: 10.1016/j.bbabio.2009.07.002
  34. B. Loll, J. Kern, W. Saenger, et al., Biochim. Biophys. Acta, 1767, 509 (2007). doi: 10.1016/j.bba-bio.2006.12.009
  35. N. Mizusawa and H. Wada, Biochim. Biophys. Acta, 1817, 194 (2012). doi: 10.1016/j.bbabio.2011.04.008

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies