Mechanism of inhibition of the oxygen-evolving complex of photosystem II by lanthanide cations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The process of the interaction of La3+and Tb3+ cations with the Ca-binding site of the oxygen-evolving complex of photosystem II samples depleted of calcium has been studied. The binding of cations to the Ca-binding site is irreversible and the bound cations cannot be washed out or replaced by Ca2+ cation. A feature of lanthanides to bind strongly to the Ca-binding site has been used to investigate if the bound Ln3+ cation has an effect on the high-affinity Mn-binding site of the oxygen-evolving complex. Therefore, in this work, hydroquinone was used for the extraction of manganese cations from the oxygen-evolving complex of the calcium-depleted photosystem II membranes with the Ca-binding site blocked by La3+ or Tb3+ and the activity of the high-affinity site was then examined using exogenous electron donors (Mn2+ + H2O2) and 1,5-di-phenylcarbazide. It was found that lanthanide cation bound to the Ca-binding site can significantly inhibit the oxidation rates of electron donors through the high-affinity Mn-binding site. The mechanism of the observed effect is discussed.

Sobre autores

E. Lovyagina

Lomonosov Moscow State University

Email: elena.lovyagina@gmail.com
Moscow, Russia

A. Loktyushkin

Lomonosov Moscow State University

Email: elena.lovyagina@gmail.com
Moscow, Russia

N. Vasiliev

Lomonosov Moscow State University

Email: elena.lovyagina@gmail.com
Moscow, Russia

B. Semin

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: elena.lovyagina@gmail.com
Moscow, Russia

Bibliografia

  1. Y. Umena, K. Kawakami, J.-R. Shen, et al., Nature, 473, 55 (2011). doi: 10.1038/nature09913
  2. M. Suga, F. Akita, K. Hirata, et al., Nature, 517, 99 (2015). doi: 10.1038/nature13991
  3. J. P. McEvoy and G. W. Brudvig, Chem. Rev., 106(11), 4455 (2006). doi: 10.1021/cr0204294
  4. C. J. Kim and R. J. Debus, Biochemistry, 56, 2558 (2017). doi: 10.1021/acs.biochem.6b01278
  5. E. Y. Tsui, R. Tran, J. Yano, et al., Nature Chem., 5, 293 (2013). doi: 10.1038/nchem.1578
  6. M. Shamsipur and A. Pashabadi, Coord. Chem. Rev., 374, 153 (2018). doi: 10.1016/j.ccr.2018.07.006
  7. K. Saito, M. Nakagawa, M. Mandal, et al., Photosynth. Res., 148, 153(2021). doi: 10.1007/s11120-021-00846-y
  8. T. Ono and Y. Inoue, Biochim. Biophys. Acta, 1020, 269 (1990). doi: 10.1016/0005-2728(90)90157-Y
  9. T. Ono and Y. Inoue, FEBS Lett., 227, 147 (1988). doi: 10.1016/0014-5793(88)80886-X
  10. T. Ono and Y. Inoue, Biochim. Biophys. Acta, 850, 380 (1986). doi: 10.1016/0005-2728(86)90194-5
  11. J. S. Vrettos, D. A. Stone, and G. W. Brudvig, Biochemistry, 40, 7937 (2001). doi: 10.1021/bi010679z
  12. D. F. Ghanotakis, G. T. Babcock, and C. F. Yocum, FEBS Lett., 167, 127 (1984a). doi: 10.1016/0014-5793(84)80846-7
  13. D. F. Ghanotakis, G. T. Babcock, and C. F Yocum, Biochim. Biophys. Acta, 809, 173 (1985). doi: 10.1016/0005-2728(85)90060-X
  14. T. Ono, J. Inorg. Biochem., 82, 85 (2000). doi: 10.1016/S0162-0134(00)00144-6
  15. C. M. Waggoner and C. F Yocum, in: Current Research in Photosynthesis, Ed. by M. Baltscheffsky (Springer, Dordrecht, Netherlands, 1990), pp. 733-736. doi: 10.1007/978-94-009-0511-5_167
  16. M. Epstein, J. Reuben, and A. Levitzki, Biochemistry, 16, 2449 (1977).
  17. E. R. Lovyagina, A. V. Loktyushkin, and B. K. Semin, J. Biol. Inorg. Chem., 26, 1 (2021). doi: 10.1007/s00775-020-01832-w
  18. D. F Ghanotakis and G. T. Babcock, FEBS Lett., 153, 231 (1983). doi: 10.1016/0014-5793(83)80154-9
  19. R. J. Porra, W. A. Tompson, and P. E. Kriedemann, Biochim. Biophys. Acta, 975, 384 (1989). doi: 10.1016/S0005-2728(89)80347-0
  20. D. F. Ghanotakis, G. T. Babcock, and C. F. Yocum, Biochim. Biophys. Acta, 765, 388 (1984б). doi: 10.1016/0005-2728(84)90180-4
  21. Q. Xu and T. M. Bricker, J. Biol. Chem., 267, 25816 (1992). doi: 10.1016/S0021-9258(18)35683-7
  22. J. M. Armstrong, Biochim. Biophys. Acta, 86, 194 (1964). doi: 10.1016/0304-4165(64)90180-1
  23. B. K. Semin, L. N. Davletshina, and A. B.Rubin, Photosynth. Res., 125, 95 (2015). doi: 10.1007/s11120-015-0155-4
  24. P. J. Nixon and B. A. Diner, Biochemistry, 31, 942 (1992). doi: 10.1021/bi00118a041
  25. K. A. Campbell, D. A. Force, P. J. Nixon, et al., J. Am. Chem. Soc., 122, 3754 (2000). doi: 10.1021/ja000142t
  26. B. K. Semin, M. L. Ghirardi, and M. Seibert, Biochemistry, 41, 5854 (2002). doi: 10.1021/bi0200054
  27. H. Inoue and T. Wada, Plant Cell Physiol., 28, 767 (1987). DOI: 10.1093/ oxfordjournals.pcp.a077357
  28. A. Boussac, M. Picaud, and A.-L. Etienne, Photobiochem. Photobiophys., 10, 201 (1986).
  29. B. K. Semin, L. N. Davletshina, A. Yu. Aleksandrov, et al., Biochemistry (Moscow), 69, 410 (2004). doi: 10.1023/B:BIRY.0000022066.38297.8a
  30. C. W. Hoganson, D. F. Ghanotakis, G. T. Babcock, et al., Photosynth. Res., 22, 285 (1989). doi: 10.1007/BF000 48306
  31. A.-F. Miller and G. W. Brudvig, Biochemistry, 29, 1385 (1990). doi: 10.1021/bi00458a007
  32. B. K. Semin, L. N. Davletshina, M. Seibert, et al., J. Photochem. Photobiol. B: Biology, 178, 192 (2018). doi: 10.1016/j.jphotobiol.2017.11.016
  33. V. N. Kurashov, E. R. Lovyagina, D. Yu. Shkolnikov, et al., Biochim. Biophys. Acta, 1787, 1492 (2009). doi: 10.1016/j.bbabio.2009.07.002
  34. B. Loll, J. Kern, W. Saenger, et al., Biochim. Biophys. Acta, 1767, 509 (2007). doi: 10.1016/j.bba-bio.2006.12.009
  35. N. Mizusawa and H. Wada, Biochim. Biophys. Acta, 1817, 194 (2012). doi: 10.1016/j.bbabio.2011.04.008

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies