Eksperimental'nyy analiz algoritma otsenivaniya gel'derovoy eksponenty na baze kontseptsii ϵ-slozhnosti nepreryvnykh funktsiy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper describes one method for estimating the Hölder exponent based on the 
-complexity of continuous functions, a concept formulated lately. Computational experiments are carried out to estimate the Hölder exponent for smooth and fractal functions and study the trajectories of discrete deterministic and stochastic systems. The results of these experiments are presented and discussed.

Sobre autores

Yu. Dubnov

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences; National Research University Higher School of Economics

Email: yury.dubnov@phystech.edu
Moscow, Russia; Moscow, Russia

A. Popkov

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences

Email: apopkov@isa.ru
Moscow, Russia

B. Darkhovskiy

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences

Autor responsável pela correspondência
Email: darbor2004@mail.ru
Moscow, Russia

Bibliografia

  1. Павлов А.Н., Анищенко В.С. Мультифрактальный анализ сложных сигналов // Успехи физических наук. 2007. Т. 177. С. 859-876.
  2. Ширяев А.Н. Основы стохастической финансовой математики. 2016. МЦНМО.
  3. Савицкий А.В. Метод оценки показателя Хёрста фрактального броуновского движения // Доклады РАН. 2019. Т. 489. № 5. С. 456-460.
  4. Falkoner K.J. Fractal Geometry: Mathematical foundations and Applications. Wiley, 2003.
  5. Ming L., Vitanyi P. An Introduction to Kolmogorov Complexity and Its Applications (англ.). 2nd ed. Springer, 1997.
  6. Piryatinska A., Darkhovsky B., Kaplan A. Binary classification of multichannel-EEG records based on the ǫ-complexity of continuous vector functions // Comput. Method. Program. Biomedicin. 2017. V. 152, P. 131-139.
  7. Piryatinska A., Darkhovsky B. Retrospective change-points detection for multidimensional time series of arbitrary nature: Model-free technology based on the ǫ-complexity theory // Entropy. 2021. V. 23. No. 12. P. 1626.
  8. Дарховский Б.С. Оценка показателя Гёльдера на основе концепции ǫ-сложности непрерывных функций // Математические заметки. 2022. Т. 111. Вып. 4. С. 620-623.]
  9. Dahan A., Dubnov Y.A., Popkov A.Y. et al. Brief Report: Classification of Autistic Traits According to Brain Activity Recoded by fNIRS Using ǫ-Complexity Coefficients // J. Autism Dev Disord. 2020. Vol. 51. Iss. 9. P. 3380-3390.
  10. Дарховский Б.С. О сложности и размерности непрерывных конечномерных отображений // Теория вероятностей и ее применения. 2020. Т. 65. Вып. 3. С. 479-497.
  11. Колмогоров А.Н. Комбинаторные основания теории информации и исчисления вероятностей // Успехи математических наук. 1983. Т. 38. № 4. С. 27-36.
  12. Ито К., Маккин Г. Диффузионные процессы и их траектории. М.: Мир, 1968.
  13. M¨orters P., Peres V. Brownian Motion. Cambridge University Press, 2010.

Declaração de direitos autorais © The Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies