Velocity of Flow on Regular Non-Homogeneous Open One-Dimensional Net with Non-Symmetrical Arrangement of Nodes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A system is studied such that this system belongs to the class of dynamical systems called the Buslaev nets. This class has been developed for the purpose of creating traffic models on network structures such that, for these models, analytical results can be obtained. There may be other network applications of Buslaev nets. The considered system is called an open chain of contours. Segments called clusters move along circumferences (contours) according to prescribed rules. For each contour (except the leftmost and rightmost contours) there are two adjacent contours. Each of the leftmost and rightmost contours has one adjacent contour. There is a common point (node) for any two adjacent contours. Results have been obtained on the average velocity of cluster movement, taking into account delays during the passage through nodes. These results generalize the results obtained previously for a particular case of the system under consideration.

Sobre autores

A. Bugaev

Moscow Institute of Physics and Technology

Email: bugaev@cos.ru
Moscow, Russia

M. Yashina

Moscow Automobile and Road Construction Technical University; Moscow Technical University of Communications and Informatics; Moscow Aviation Institute (National Research University)

Email: mv.yashina@madi.ru
Moscow, Russia; Moscow, Russia; Moscow, Russia

A. Tatashev

Moscow Automobile and Road Construction Technical University; Moscow Technical University of Communications and Informatics

Autor responsável pela correspondência
Email: a-tatashev@yandex.ru
Moscow, Russia; Moscow, Russia

Bibliografia

  1. Wolfram S. Statistical mechanics of cellular automata // Rev. Mod. Phys. 1983. V. 55. P. 601-644. https://doi.org/10.1103/RevModPhys.55.601
  2. Spitzer F. Interaction of Markov processes // Advances in Mathematics. 1970. V. 5. No. 2. P 246-290.
  3. Nagel K., Schreckenberg M. A cellular automaton model for freeway traffic // J. Phys. I. 1992. V. 2. No. 12. P. 2221-2229. https://doi.org/10.1051/jp1:1992277
  4. Schreckenberg M., Schadschneider A., Nagel K., Ito N. Discrete stochastic models for traffic flow // Phys. Rev. E. 1995. V. 51. P. 2939-2949. https://doi.org/10.1103/PhysRevE.51.2939
  5. Blank M.L. Exact analysis of dynamical systems arising in models of traffic flow // Russian Mathematical Surveys. 2000. V. 55. No. 3. P. 562-563. https://doi.org/10.1070/RM2000v055n03ABEH000295
  6. Gray L., Griffeath D. The ergodic theory of traffic jams // J. Stat. Phys. 2001. V. 105. No. 3/4. P. 413-452.
  7. Belitsky V., Ferrari P.A. Invariant measures and convergence properties for cellular automation 184 and related processes // J. Stat. Phys. 2005. V. 118. No. 3/4. P. 589-623. https://doi.org/10.1007/s10955-004-8822-4
  8. Kanai M., Nishinari K., Tokihiro T. Exact solution and asymptotic behaviour of the asymmetric simple exclusion process on a ring // J. Phys. A: Mathematical and General. 2006. V. 39. No. 29. 9071. https://doi.org/10.1088/0305-4470/39/29/004
  9. Blank M. Metric properties of discrete time exclusion type processes in continuum. J. Stat. Phys. 2010. V. 140. No. 1. P. 170-197. https://doi.org/10.1007/s10955-010-9983-y
  10. Evans M.R., Rajewsky N., Speer E.R. Exact solution of a cellular automaton for traffic // J. Stat. Phys. 2010. V. 95. P. 45-56. https://doi.org/10.1023/A:1004521326456
  11. Biham O., Middleton A.A., Levine D. Self-organization and a dynamic transition in traffic-flow models // Phys. Rev. A. 1992. V. 46. No. 10. P. R6124-R6127. https://doi.org/10.1103/PhysRevA.46.R6124
  12. Angel O., Holroyd A.E., Martin J.B. The Jammed Phase of the Biham-Middleton-Levine Traffic Model // Electronic Communications in Probability. 2005. V. 10. Paper 17. P. 167-178. https://doi.org/10.48550/arXiv.math/0504001
  13. D'Souza R.M. Coexisting phases and lattice dependence of a cellular automata model for traffic flow // Physical Review E. 2005. V. 71. 0066112.
  14. D'Souza R.M. BML revisited: Statistical physics, computer simulation and probability // Complexity. 2006. V. 12. No. 2. P. 30-39.
  15. Austin T., Benjamini I. For what number must self organization occur in the Biham-Middleton-Levine traffic model from any possible starting configuration? // arXiv preprint math/0607759, 2006.
  16. Pan Wei, Xue Yu, Zhao Rui, Lu Wei-Zhen. Biham-Middleton-Levine model in consideration of cooperative willingness // Chin. Phys. B. 2014. V. 23. No. 5. 058902. https://doi.org/10.1088/1674-1056/23/5/058902
  17. Wenbin Hu, Liping Yan, Huan Wang, Bo Du, Dacheng Tao. Real-time traffic jams prediction inspired by Biham, Middeleton and Levine (BML) // Information Sciences. 2017. P. 209-228. https://doi.org/10.1016/j.ins.2016.11.023
  18. Moradi H.R., Zardadi A., Heydarbeygi Z. The number of collisions in Biham-Middleton-Levine model on a square lattice with limited number of cars // Appl. Math. E-Notes. 2019. V. 19. P. 243-249.
  19. Malecky K. Graph cellular automata with relation-based neighbourhoods of cells for complex systems modelling: A case of traffic simulation // Symmetry 2017. V. 9, 322. https://doi.org/10.3390/sym9120322
  20. Гасников А.В. и др. Введение в математическое моделирование транспортных потоков. Издание 2-е, испр. и доп. Под ред. А.В. Гасникова. М.: МЦНМО, 2013. 429 с.
  21. Bugaev A.S., Buslaev A.P., Kozlov V.V., Yashina M.V. Distributed problems of monitoring and modern approaches to traffic modeling // 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, USA, 5-7 October 2011. P. 477-481. https://doi.org/10.1109/ITSC.2011.6082805
  22. Kozlov V.V., Buslaev A.P., Tatashev A.G. On synergy of totally connected ows on chainmails // Proc. of the 13th International Conference of Computational and Applied Methods in Science and Engineering, Almeria, Spain, 24-27 June 2013. V. 3. P. 861-874.
  23. Мышкис П.А., Таташев А.Г., Яшина М.В. Кластерное движение в двухконтурной системе с приоритетным правилом разрешения конфликта // Изв. РАН. Теория и системы управления. 2020. № 3. С. 3-13.
  24. Yashina M., Tatashev A. Spectral cycles and average velocity of clusters in discrete two-contours system with two nodes // Math. Meth. Appl. Sci. 2020. V. 43. No. 7. P. 4303-4316. https://doi.org/10.1002/mma.6194
  25. Buslaev A.P., Tatashev A.G., Yashina M.V. Qualitative properties of dynamical system on toroidal chainmails // AIP Conference Proceedings. 2013. V. 1558. P. 1144-1147. https://doi.org/10.1063/1.4825710
  26. Buslaev A.P., Tatashev A.G. Spectra of local cluster ows on open chain of contours // Eur. J. Pure Appl. Math. 2018. V. 11. No. 3. P. 628-641. https://doi.org/10.29020/nybg.ejpam.11i3.3292
  27. Yashina M., Tatashev A. Discrete open Buslaev chain with heterogeneous loading // 2019 7th International Conference on Control, Mechatronics and Automation (ICCMA), 6-8 Nov. 2019, Delft, Netherlands. P. 283-288. https://doi.org/10.1109/ICCMA46720.2019.8988654
  28. Бугаев А.С., Яшина М.В., Таташев А.Г., Фомина М.Ю. О спектре скоростей насыщенных потоков на регулярной открытой одномерной сети / XI Всероссийской мультиконференции по проблемам управления МКПУ-2021, материал XIV мультиконференции: в 4 т. Ростов-на-Дону, 2021. С. 41-44.
  29. Бугаев А.С., Таташев А.Г., Яшина М.В. Спектр непрерывной замкнутой симметричной цепочки с произвольным числом контуров // Математическое моделирование. 2021. Т. 33. № 4. С. 21-44.
  30. Yashina M.V., Tatashev A.G. Invariant measure for continuous open chain of contours with discrete time // Computational and Mathematical Methods. e1197. First published: 28 September 2021. https://doi.org/10.1002/cmm4.1197

Declaração de direitos autorais © The Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies