PRIMENENIE FIL'TRA LINEYNYKh PSEVDONABLYuDENIY V ZADAChAKh SLEZhENIYa I POZITsIONIROVANIYa PO NABLYuDENIYaM SO SLUChAYNYMI ZAPAZDYVANIYaMI
- Authors: Bosov A.V1
- 
							Affiliations: 
							
- Issue: No 10 (2025)
- Pages: 81-100
- Section: Stochastic systems
- URL: https://journals.rcsi.science/0005-2310/article/view/321426
- DOI: https://doi.org/10.31857/S0005231025100058
- ID: 321426
Cite item
Abstract
References
- Ehlers F. (Ed.) Autonomous Underwater Vehicles: Design and Practice (Radar, Sonar & Navigation). London, UK: SciTech Publishing, 2020.
- Mohsan S.A.H., Khan M.A., Noor F., Ullah I., Alsharif M.H. Towards the unmanned aerial vehicles (UAVs): A comprehensive review // Drones. 2022. V. 6. No. 6 (147).
- Burns L.D., Shulgan C. Autonomy: The quest to build the driverless car-and how it will reshape our world. HarperCollins, 2018. 368 p.
- Christ R.D., Wernli R.L. The ROV Manual: A User Guide for Remotely Operated Vehicles. 2nd Edition. Oxford, UK: Butterworth-Heinemann, 2013.
- Zhu Z., Hu S.-L.J., Li H. Effect on Kalman based underwater tracking due to ocean current uncertainty // Proc. 2016 IEEE/OES Autonomous Underwater Vehicles, Tokyo, Japan, 6–9 November 2016. P. 131–137.
- Kebkal K.G., Mashoshin A.I. AUV acoustic positioning methods // Gyroscopy Navig. 2017. V. 8. P. 80–89.
- Bosov A. Tracking a Maneuvering Object by Indirect Observations with Random Delays // Drones. 2023. No. 7 (468).
- Bosov A. Maneuvering Object Tracking and Movement Parameters Identification by Indirect Observations with Random Delays // Axioms. 2024. No. 13 (668).
- Bernstein I., Friedland B. Estimation of the State of a Nonlinear Process in the Presence of Nongaussian Noise and Disturbances // J. Franklin Instit. 1966. V. 281. No. 6. P. 455–480.
- Arulampalam S., Maskell S., Gordon N.J., Clapp T. A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking // IEEE Trans. Signal Processing. 2002. V. 50. No. 2. P. 174–188.
- Julier S.J., Uhlmann J.K., Durrant-Whyle H.F. A new approach for filtering nonlinear systems // Proc. IEEE Amer. Control Conf. (ACC'95), 1995. P. 1628–1632.
- Pankov A.R., Bosov A.V. Conditionally minimax algorithm for nonlinear system state estimation // IEEE Trans. Autom. Control. 1994. V. 39. No. 8. P. 1617–1620.
- Su X., Ullah I., Liu X., Choi D. A Review of Underwater Localization Techniques, Algorithms, and Challenges // J. Sens. 2020. No. 1 (6403161).
- Kalman R.E. A new approach to linear filtering and prediction problems // J. Basic Eng. – T. ASME. 1960. V. 82. No. 1. P. 35–45.
- Lingren A., Gong K. Position and Velocity Estimation Via Bearing Observations // IEEE Trans. Aerosp. Electron. Syst. 1978. No. AES-14. P. 564–577.
- Lin X., Kirubarajan T., Bar-Shalom Y., Maskell S. Comparison of EKF, pseudomeasurement, and particle filters for a bearing-only target tracking problem // Signal and Data Processing of Small Targets 2002, Proceedings of the AEROSENSE 2002, Orlando, FL, USA, 1–5 April 2002; Drummond, O.E., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2002. V. 4728. P. 240–250.
- Konovalenko I., Kuznetsova E., Miller A., et.al. New Approaches to the Integration of Navigation Systems for Autonomous Unmanned Vehicles (UAV) // Sensors. 2018. No. 18 (3010).
- Hodges R. Underwater Acoustics: Analysis, Design and Performance of Sonar. N.Y.: Wiley, USA, 2011.
- Holler R.A. The evolution of the sonobuoy from World War II to the Cold War // US Navy J. Underwater Acoust. 2014. V. 25. No. 1. P. 322–346.
- Morris J. The Kalman filter: A robust estimator for some classes of linear quadratic problems // IEEE Trans. Inf. Theory. 1976. V. 22. No. 5. P. 526–534.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				
 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					