REShENIE ZADACh O MNOGOTOVARNYKh SETEVYKh POTOKAKh BOL'ShOY RAZMERNOSTI NA GRAFIChESKIKh PROTsESSORAKh
- Authors: ChZhAN F.1, BOYD S.1
-
Affiliations:
- Issue: No 8 (2025)
- Pages: 116-134
- Section: Topical issue
- URL: https://journals.rcsi.science/0005-2310/article/view/304790
- DOI: https://doi.org/10.31857/S0005231025080066
- EDN: https://elibrary.ru/UTHPNJ
- ID: 304790
Cite item
Abstract
References
- Yin P., Diamond S., Lin B., Boyd. S. Network optimization for unified packet and circuit switched networks // ArXiv Preprint ArXiv:1808.00586. 2019. https://arxiv.org/abs/1808.00586
- Bar-Gera H., Boyce D. Origin-based algorithms for combined travel forecasting models // Transportation Research Part B: Methodological. 2003. V. 37. No. 5. P. 405–422.
- Boyd S., Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004.
- ApS MOSEK. The MOSEK optimization toolbox for MATLAB manual. Version 9.0. 2019. http://docs.mosek.com/9.0/toolbox/index.html
- Diamond S., Boyd S. CVXPY: A Python-embedded modeling language for convex optimization // J. Machin. Learn. Res. 2016. V. 17. No. 83. P. 1–5.
- Ford Jr.L., Fulkerson D. A suggested computation for maximal multi-commodity network flows // Management Science. 1958. V. 5. No. 1. P. 97–101.
- Hu T. Multi-commodity network flows // Operations Research. 1963. V. 11. No. 3. P. 344–360.
- Gautier A., Granot F. Forest management: A multicommodity flow formulation and sensitivity analysis // Management Science. 1995. V. 41. No. 10. P. 1654–1668.
- Ouorou A., Mahey P. A minimum mean cycle cancelling method for nonlinear multicommodity flow problems // Eur. J. Oper. Res. 2000. V. 121. No. 3. P. 532–548.
- Manfren M. Multi-commodity network flow models for dynamic energy management–mathematical formulation // Energy Procedia. 2012. V. 14. P. 1380–1385.
- Kabadurnus O., Smith A. Multi-commodity k-splittable survivable network design problems with relays // Telecommunication Systems. 2016. V. 62. P. 123–133.
- Zantuti A. The capacity and non-simultaneously multicommodity flow problem in wide area network and data flow management // Proceedings of the 18th International Conference on Systems Engineering. 2005. P. 76–80. https://doi.org/10.1109/ICSENG.2005.81
- Erera A., Morales J., Savelsbergh M. Global intermodal tank container management for the chemical industry // Transportation Research Part E: Logistics and Transportation Review. 2005. V. 41. P. 551–566.
- Mesquita M., Moz M., Paias A., Pato M. A decompose-and-fix heuristic based on multi-commodity flow models for driver rostering with days-off pattern // European Journal of Operational Research. 2015. V. 245. No. 2. P. 423–437.
- Rudi A., Frohling M., Zimmer K., Schultmann F. Freight transportation planning considering carbon emissions and in-transit holding costs: a capacitated multicommodity network flow model // EURO J. Transport. Logist. 2016. V. 5. P. 123–160. https://api.semanticscholar.org/CorpusID:53229695
- Singh I. A dynamic multi-commodity model of the agricultural sector: A regional application in Brazil // European Economic Review. 1978. V. 11. P. 155–179. https://api.semanticscholar.org/CorpusID:152973282
- Wagner D., Raúll G., Pferschy U., Mutzel P., Bachhtesl P. A multi-commodity flow approach for the design of the last mile in real-world fiber optic networks // Operation Research Proceedings. 2006. https://api.semanticscholar.org/CorpusID:17037020
- Layeb S., Heni R., Balma A. Compact MILP models for the discrete cost multicommodity network design problem // 2017 International Conference on Engineering & MIS. IEEE, 2017. P. 1–7.
- Salimifard K., Bigharaz S. The multicommodity network flow problem: state of the art classification, applications, and solution methods // Operational Research. 2022. V. 22. No. 1. P. 1–47.
- Ovorou A., Mahey P., Vial J. A survey of algorithms for convex multicommodity flow problems // Management Science. 2000. V. 46. No. 1. P. 126–147.
- Liu X., Arzani B., Kokarla S., Zhao L., Liu V., Castro M., Kandula S., Marshall L. Rethinking machine learning collective communication as a multi-commodity flow problem // Proceedings of the ACM SIGCOMM 2024 Conference. 2024. P. 16–37.
- Basu P., Zhao L., Fanti J., Pal S., Krishnamurthy A., Khoury J. Efficient all-to-all collective communication schedules for direct-connect topologies // Proceedings of the 33rd International Symposium on High-Performance Parallel and Distributed Computing. 2024. P. 28–41. https://doi.org/10.1145/3625549.3658656
- Applegate D., Díaz M., Hinder O., Lu H., Lubin M., O’Donoghue B., Schudy W. Practical large-scale linear programming using primal-dual hybrid gradient // Neural Information Processing Systems. 2021. https://api.semanticscholar.org/CorpusID:235376806
- Lu H., Yang J. cuPDLP.jl: A GPU implementation of restarted primal-dual hybrid gradient for linear programming in Julia // ArXiv Preprint ArXiv:2311.12180. 2024. https://arxiv.org/abs/2311.12180
- Lu H., Peng Z., Yang J. MPAX: mathematical programming in JAX // ArXiv Preprint ArXiv:2412.09734. 2024. https://arxiv.org/abs/2412.09734
- Ryu E., Chen Y., Li W., Osher S. Vector and matrix optimal mass transport: theory, algorithm, and applications // SIAM J. Scientif. Comput. 2018. V. 40. No. 5. P. A3675-A3698.
- Degleris A., Gamal A., Rajagopal R. GPU accelerated security constrained optimal power flow // ArXiv Preprint ArXiv:2410.17203. 2024. https://arxiv.org/abs/2410.17203
- Ryu M., Byeon G., Kim K. A GPU-accelerated distributed algorithm for optimal power flow in distribution systems // ArXiv Preprint ArXiv:2501.08293. 2025.
- Wang X., Zhang Q., Ren J., Xu S., Wang S., Yu S. Toward efficient parallel routing optimization for large-scale SDN networks using GPGPU // Journal Network Comput. Appl. 2018. V. 113. P. 1–13.
- Kikuta K., Oki E., Yamanaka N., Togawa N., Nakazato H. Effective parallel algorithm for GPGPU-accelerated explicit routing optimization // 2015 IEEE Global Communications Conference. IEEE, 2015. P. 1–6.
- Zhang S., Ajayi O., Cheng Y. A self-supervised learning approach for accelerating wireless network optimization // IEEE Transactions on Vehicular Technology. 2023. V. 72. No. 6. P. 8074–8087.
- Wu J., He Z., Hong B. Chapter 5 – Efficient CUDA algorithms for the maximum network flow problem // GPU Computing Gems Jade Edition. Boston: Morgan Kaufmann, 2012. P. 55–66. https://www.sciencedirect.com/science/article/pii/B9780123859631000058
- Liu H., Huang S., Qin S., Yang T., Yang T., Xiang Q., Liu X. Keep your paths free: Toward scalable learning-based traffic engineering // Proceedings of the 8th Asia-Pacific Workshop on Networking. 2024. P. 189–191. https://doi.org/10.1145/3663408.3665813
- Gurobi Optimization. LLC Gurobi Optimizer Reference Manual. 2024. https://www.gurobi.com
- Yarmoshik D., Persitanov M. On the application of saddle-point methods for combined equilibrium transportation models // Proceedings of the 23rd International Conference on Mathematical Optimization Theory and Operations Research (MOTOR). 2024. P. 432–448. https://doi.org/10.1007/978-3-031-62792-7_29
- Kubentayeva M., Yarmoshik D., Persitanov M., Kroshnin A., Kotliarova E., Tuptisa N., Pasechnyuk D., Gasnikov A., Shvetsov V., Baryshev L., Shurypov A. Primal-dual gradient methods for searching network equilibria in combined models with nested choice structure and capacity constraints // ArXiv Preprint ArXiv:2307.00427. 2023. https://arxiv.org/abs/2307.00427
- Malitsky Y., Pock T. A first-order primal-dual algorithm with linesearch // SIAM J. Optim. 2018. V. 28. No. 1. P. 411–432.
- Zhu M., Chan T. An efficient primal-dual hybrid gradient algorithm for total variation image restoration // UCLA CAM Report. 2008. V. 34. No. 2.
- Chambolle A., Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging // J. Math. Imaging Vision. 2011. V. 40. P. 120–145.
- Chambolle A., Pock T. On the ergodic convergence rates of a first-order primal-dual algorithm // Mathematical Programming. 2015. V. 159. P. 253–287.
- Parikh N., Boyd S. Proximal algorithms // Foundations and Trends in Optimization. 2014. V. 1. No. 3. P. 127–239.
- Held M., Wolfe P., Crowder H. Validation of subgradient optimization // Mathematical Programming. 1974. V. 6. P. 62–88.
- Duchi J., Shalev-Shwartz S., Singer Y., Chandra T. Efficient projections onto the l1-ball for learning in high dimensions // Proceedings of the 25th International Conference on Machine Learning. 2008. P. 272–279. https://doi.org/10.1145/1390156.1390191
- Condat L. Fast projection onto the simplex and the l1 ball // Mathematical Programming. 2016. V. 158. No. 1-2. P. 575–585. https://doi.org/10.1007/s10107-015-0946-6
Supplementary files
