Exponential Stabilization with Incomplete Measurements and Asymptotic Estimation of Solutions of Linear Systems of Neutral Type

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Для линейной автономной дифференциально-разностной системы нейтрального типа с сосредоточенными запаздываниями получены критерии существования регуляторов с обратной связью по измерениям наблюдаемого выхода, обеспечивающих заданный спектр или экспоненциальную стабилизацию. Доказаны критерии существования наблюдателей, формирующих асимптотические оценки и имеющих ошибки, описываемые линейными однородными системами с наперед заданным характеристическим квазиполиномом или обладающими свойством экспоненциальной устойчивости. Все рассуждения работы являются конструктивными и содержат метод построения соответствующего регулятора или наблюдателя.

References

  1. Долгий Ю.Ф., Сурков П.Г. Математические модели динамических систем с запаздыванием. Екатеринбург: Изд-во Урал. ун-та, 2012. 122 с. https://elar.urfu.ru/bitstream/10995/45629/1/978-5-7996-0772-2_2012.pdf (дата обращения: 17.03.2025)
  2. Колмановский В.Б., Носов В.Р. Системы с последействием нейтрального типа // АиТ. 1984. №1. С. 5–35.
  3. Полосков И.Е. Методы анализа систем с запаздыванием [Электронный ресурс]: монография: Пермский государственный национальный исследовательский университет. Электронные данные. Пермь. 2020. – 19 Мб; 900 с. Режим доступа: http://www.psu.ru/files/docs/science/books/mono/poloskov-metody-analizasistem.pdf
  4. Хартовский В.Е. Управление линейными системами нейтрального типа: качественный анализ и реализация обратных связей. Гродно: ГрГУ, 2022. 500 с.
  5. Гребенщиков Б.К. Асимптотические свойства и стабилизация одной системы нейтрального типа с постоянным запаздыванием // Вестник СПбГУ. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17. Вып. 1. С. 81–96. https://doi.org/10.21638/11701/spbu10.2021.108
  6. Булгаков Б.В. Колебания. М.: Из-во технико-теоретической лит-ры. 1954. 891 с.
  7. Красовский Н.Н., Осипов Ю.С. О стабилизации движений управляемого объекта с запаздыванием в системе регулирования // Изв. АН СССР. Техн. кибернетика. 1963. № 6. С. 3–15.
  8. Осипов Ю.С. О стабилизации управляемых систем с запаздыванием // Дифференц. уравнения. 1965. Т. 1. № 5. С. 606–618.
  9. Pandolfi L. Stabilization of neutral functional-differential equations // J. Optim. Theory Appl. 1976. V. 20. No. 2. P. 191–204. https://doi.org/10.1007/BF01767451
  10. Lu W.S., Lee E., Zak S. On the stabilization of linear neutral delay-dfference systems // IEEE Transact. Autom. Control. 1986. V. 31. No. 1. P. 65–67. https://doi.org/10.1109/TAC.1986.1104115
  11. Rabah R., Sklyar G.M., Barkhayev P.Y. Stability and stabilizability of mixed retarded-neutral type systems // ESAIM Control, Optimization and Calculus of Variations. 2012. V. 18. No. 3. P. 656–692. https://doi.org/10.1051/cocv/2011166
  12. Долгий Ю.Ф., Сесекин А.Н. Исследование регуляризации вырожденной задачи импульсной стабилизации системы с последействием // Тр. ин-та мат. и механики УрО РАН. 2024. Т. 30. № 1. С. 80–99. https://doi.org/10.21538/0134-4889-2022-28-1-74-95
  13. Hu G.D., Hu R. A frequency-domain method for stabilization of linear neutral delay systems // Syst. Control. Lett. November 2023. V. 181. Art. 105650. https://doi.org/10.1016/j.sysconle.2023.105650
  14. Hale J.K., Verduyn Lunel S.M. Strong stabilization of neutral functional differential equations // IMA J. Math. Control Inf. 2002. V. 19. No. 1–2. P. 5–23. https://doi.org/10.1093/imamci/19.1_and_2.5
  15. Метельский А.В. Управление спектром системы нейтрального типа // Дифференц. уравнения. 2024. Т. 60. № 1. C. 99–125. https://doi.org/10.31857/S0374064124010097
  16. Миняев С.И., Фурсов А.С. Топологический подход к одновременной стабилизации объектов с запаздыванием // Дифференц. уравнения. 2013. Т. 49. № 11. С. 1453–1461. https://doi.org/10.1134/S0374064113110095
  17. Watanabe K. Finite spectrum assignment and observer for multivariable systems with commensurate delays // IEEE Trans. Autom. Control. 1986. V. AC–31. No. 6. P. 543–550. https://doi.org/10.1109/TAC.1986.1104336
  18. Wang Q.G., Lee T.H., Tan K.K. Finite Spectrum Assignment Controllers for Time Delay Systems. Springer-Verlag, 1999. 129 p. https://doi.org/10.1007/978-1-84628-531-8
  19. Метельский А.В. Спектральное приведение, полное успокоение и стабилизация системы с запаздыванием одним регулятором // Дифференц. уравнения. 2013. Т. 49. № 11. С. 1436–1452. https://doi.org/10.1134/S0374064113110083
  20. Марченко В.М. Управление системами с последействием в шкалах линейных регуляторов по типу обратной связи // Дифференц. уравнения. 2011. Т. 47. № 7. С. 1003–1017. https://doi.org/10.1134/S0012266111070111
  21. Метельский А.В., Хартовский В.Е. Критерии модальной управляемости линейных систем нейтрального типа // Дифференц. уравнения. 2016. Т. 52. № 11. С. 1506–1521. https://doi.org/10.1134/S0374064116110078
  22. Хартовский В.Е. Модальная управляемость линейных систем нейтрального типа в классах дифференциально-разностных регуляторов // АиТ. 2017. № 11. С. 3–19. https://doi.org/10.1134/S0005117917110017
  23. Fridman E. Introduction to Time-Delay Systems: Analysis and Control. Birhauser. SystemsandControl: Foundations and Applications. 2014, 362 p. https://doi.org/10.1007/978-3-319-09393-2
  24. Furtat I., Fridman E. Delayed Disturbance Attenuation via Measurement Noise Estimation // IEEE Transaction on Automatic Control. 2021. V. 66. No. 11. P. 5546–5553. https://doi.org/10.1109/TAC.2021.3054238
  25. Карпук В.В., Метельский А.В. Полное успокоение и стабилизация линейных автономных систем с запаздыванием // Изв. РАН. ТиСУ. 2009. № 6. С. 19–28. https://doi.org/10.1134/S1064230709060033
  26. Метельский А.В., Хартовский В.Е., Урбан О.И. Регуляторы успокоения решения линейных систем нейтрального типа // Дифференц. уравнения. 2016. Т. 52. № 3. С. 391–403. https://doi.org/10.1134/S0374064116030122
  27. Метельский А.В. Полная и финитная стабилизация дифференциальной системы с запаздыванием обратной связью по неполному выходу // Дифференц. уравнения. 2019. Т. 55. № 12. С. 1665–1682. https://doi.org/10.1134/S0374064119120082
  28. Хартовский В.Е. Финитная стабилизация и назначение конечного спектра единым регулятором по неполным измерениям для линейных систем нейтрального типа // Дифференц. уравнения. 2024. Т. 60. № 5. С. 686–706. https://doi.org/10.31857/S0374064124050093
  29. Хартовский В.Е. Урбан О.И. Финитная стабилизация по неполным измерениям систем нейтрального типа в классе регуляторов с сосредоточенными соизмеримыми запаздываниям // АиТ. 2025. № 1. C. 3–26. https://doi.org/10.31857/S000523102501

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».