Using Ensembles with Enhanced Divergence in Forecast Space in Recommender Systems
- Authors: Senko O.V1, Dokukin A.A1, Melnik F.A1
-
Affiliations:
- Issue: No 4 (2025)
- Pages: 92-100
- Section: Optimization, system analysis, and operations research
- URL: https://journals.rcsi.science/0005-2310/article/view/288757
- DOI: https://doi.org/10.31857/S0005231025040061
- EDN: https://elibrary.ru/CAPHAM
- ID: 288757
Cite item
Abstract
About the authors
O. V Senko
Email: senkoov@mail.ru
A. A Dokukin
Email: dalex@ccas.ru
F. A Melnik
Email: melnik.tedor@gmail.com
References
- Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning Data Mining, Inference, and Prediction. Springer Series in Statistics. New York: Springer, 2009.
- Breiman L. Random Forests // Machine Learning. 2001. V. 45. No. 1. P. 5–32.
- Friedman J. Stochastic gradient boosting // Comput. Statist. Data Anal. 2002. V. 38. No. 4. P. 367–378.
- Breiman L. Bagging predictors // Machine Learning. 1996. No. 24. P. 123–140.
- Tin Kam Ho. The random subspace method for constructing decision forests // IEEE Transact. Patt. Machine Intelligen. 1998. V. 20. No. 8. P. 832–844.
- Chen T., Guestrin C. XGBoost: A Scalable Tree Boosting System // Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13–17 / eds. Krishnapuram B., Shah M., Smola A.J., Aggarwal C.C., Shen D., Rastogi R. 2016. P. 785–794.
- Ke G., Meng Q., Finley T. et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree // NIPS’17: Proc. 31st Int. Conf. Neural Inform. Proc. Syst. 2017. P. 3149–3157.
- Hancock J.T., Khoshgoftaar T.M. CatBoost for big data: an interdisciplinary review // J. Big Data. 2020. V. 7. No. 94.
- Zhuravlev Yu.I., Senko O.V., Dokukin A.A., Kiselyova N.N., Saenko I.A. Two-Level Regression Method Using Ensembles of Trees with Optimal Divergence // Dokl. Math. 2021. V. 103. P. 1–4.
- Докукин А.А., Сенько О.В. Новый двухуровневый метод машинного обучения для оценивания вещественных характеристик объектов // Изв. РАН. Теория и системы управления. 2023. No. 4. P. 17–24.
- Senko O.V., Dokukin A.A., Kiselyova N.N., et al. New Two-Level Ensemble Method and Its Application to Chemical Compounds Properties Prediction // Lobachev. J. Math. 2023. V. 44. No. 1. P. 188–197.
- Roy D., Dutta M. A systematic review and research perspective on recommender systems // J. Big Data. 2022. V. 9. No. 59.
Supplementary files
