Analysis of the “Bridge–Pedestrians” System StabilityBased on the Tsypkin Criterion
- Authors: Zaytseva Y.S1, Fradkov A.L1
-
Affiliations:
- Issue: No 1 (2025)
- Pages: 99-113
- Section: Optimization, system analysis, and operations research
- URL: https://journals.rcsi.science/0005-2310/article/view/284567
- DOI: https://doi.org/10.31857/S0005231025010068
- EDN: https://elibrary.ru/JQHZXD
- ID: 284567
Cite item
Abstract
References
- Dallard P., Fitzpatrick A., Flint A., Le Bourva S., Low A., Ridsdill Smith R.M., Willford M. The London Millennium footbridge // Structural Engineers. 2001. V. 79. No. 22. P. 17–33.
- Strogatz S., Abrams D., Mcrobie F., Eckhardt B., Ott E. Crowd synchrony on the Millennium Bridge // Nature. 2005. V. 438. P. 43–44. https://doi.org/10.1038/43843a
- Eckhardt B., Ott E., Strogatz S.H., Abrams D.M., McRobie A. Modeling walker synchronization on the Millennium Bridge // Phys. Rev. E. 2007. V. 75. P. 021110. https://doi.org/10.1103/PhysRevE.75.021110
- Josephson B. Out of step on the bridge // Letter to the Editor. The Guardian. UK. 2000.
- Barker C. Some observations on the nature of the mechanism that drives the selfexcited lateral response of footbridges // International Conference on the Design and Dynamic Behaviour of Footbridges. Paris, 2002.
- Kuramoto Y. Self-entrainment of a population of coupled non-linear oscillators // International Symposium on Mathematical Problems in Theoretical Physics / Ed. by H. Araki. Berlin, Heidelberg: Springer Berlin Heidelberg, 1975. P. 420–422.
- Macdonald J. Pedestrian-induced vibrations of the Clifton Suspension Bridge, UK // Proceedings of The Ice-Bridge Engineering. 2008. V. 161. No. 2. P. 69–77. https://doi.org/10.1680/bren.2008.161.2.69
- Belykh I., Bocian M., Champneys A., Daley K., Jeter R., Macdonald J.H.G., McRobie A. Emergence of the London Millenium Bridge instability without synchronization // Nature Communications. 2021. V. 12. No. 1. P. 7223. https://doi.org/10.1038/s41467-021-27568-y
- Belykh I., Jeter R., Belykh V. Foot force models of crowd dynamics on a wobbly bridge //Science Advances. 2017. V. 3. No. 11. P. e1701512. https://doi.org/10.1126/sciadv.1701512
- Belykh I.V., Daley K.M., Belykh V.N. Pedestrian-induced bridge instability: the role of frequency ratios // Radiophys. Quant. Electron. 2022. V. 64. No. 10. P. 700–708. https://doi.org/10.1007/s11141-022-10172-5
- Z˘ivanovi´c S., Pavic A., Reynolds P. Vibration serviceability of footbridges under human-induced excitation: a literature review // J. Sound Vibrat. 2005. V. 279. No. 1–2. P. 1–74. https://doi.org/10.1016/j.jsv.2004.01.019
- Chopra A. Dynamics of structures: Theory and applications to earthquake engineering / Ed. by A. K. Chopra. Englewood Cliffs. N.J.: Prentice-Hall, 1995. 763 p.
- Clough R., Penzien J. Dynamics of Structures. N.Y.: McGraw-Hill, 1993.
- Bachmann H., Pretlove A., Rainer H. Dynamic forces from rhythmical human body motions, in: Vibration Problems in Structures: Practical Guidelines. Birkhauser, Basel, 1995. Appendix G.
- Shahabpoor E., Pavic A., Racic V., Zivanovic S. Effect of group walking traffic on dynamic properties of pedestrian structures // J. Sound Vibrat. 2017. V. 387. P. 207–225. https://doi.org/10.1016/j.jsv.2016.10.017
- Van Nimmen K., Pavic A., Van den Broeck P. A simplified method to account for vertical human-structure interaction // Structures. 2021. V. 32. P. 2004–2019. https://doi.org/10.1016/j.istruc.2021.03.090
- Macdonald J. Lateral excitation of bridges by balancing pedestrians // Proc. R. Soc. Lond. 2009. V. 465. P. 1055–1073. https://doi.org/10.1098/rspa.2008.0367
- Czaplewski B., Bocian M., Macdonald J.H.G. Calibration of inverted pendulum pedestrian model for laterally oscillating bridges based on stepping behaviour // J. Sound Vibrat. 2024. V. 572. No. 22. P. 118141. https://doi.org/10.1016/j.jsv.2023.118141
- Буков В.Н. Оптимизация человеко-машинных систем на основе прогнозирования функционального состояния оператора // АиТ. 1995. Т. 12. С. 124–137.
- Racic V., Morin J. B. Data-driven modelling of vertical dynamic excitation of bridges induced by people running // Mechanical Systems and Signal Processing. 2014. V. 43. No. 1. P. 153–170. https://doi.org/10.1016/j.ymssp.2013.10.006
- Yao S., Wright J., Pavic A., Reynolds P. Forces generated when bouncing or jumping on a flexible Structure // International Conference on Noise and Vibration. Leuven, Belgium, 2002. P. 563–572.
- Бюшгенс Г.С., Студнев Р.В. Аэродинамика самолета. Динамика продольного и бокового движения. М.: Машиностроение, 1979. 352 с.
- McRuer D. Pilot-Induced Oscillations and Human Dynamic Behavior: Tech. Rep. 4683: NASA, 1995.
- Курочкин И.В., Мальцев А.А. О статической оптимизации взаимодействия компонент человеко-машинных систем // АиТ. 1981. Т. 8. С 35–45.
- Ефремов А.В., Оглоблин А.В., Предтеченский А.Н., Родченко В.В. Летчик как динамическая система. М.: Машиностроение, 1992. 336 с.
- Hess R. A Model for the Human Use of Motion Cues in Vehicular Control // Guidance, Control, Dynam. 1990. V. 13. No. 3. P. 476–482.
- McRuer D., Graham D., Krendel E., Reisener W. Human Pilot Dynamics in Compensatory Systems: Theory, Models and Experiments with Controlled-Element and Forcing Function Variations. Amsterdam, The Netherlands: Elsevier Ltd., 1965. AFFDL-TR-65-15.
- Hess R.A. A Model-Based Theory for Analyzing Human Control Behavior // Advances in Man-Machine Systems Research. 1985. V. 2. P. 129–175.
- Liang H., Xie W., Wei P., Dehao A., Zhiqiang Z. Identification of Dynamic Parameters of Pedestrian Walking Model Based on a Coupled Pedestrian-Structure System // Appl. Sci. 2021. V. 11. No. 14. P. 1–23. https://doi.org/10.3390/app11146407
- Magdaleno R., McRuer D. Experimental Validation and Analytical Elaboration for Models of the Pilot’s Neuromuscular Subsystem in Tracking Tasks: Tech. Rep. CR-1757: NASA, 1971.
- Hess R., Moore J.K., Hubbard M. Modeling the Manually Controlled Bicycle // IEEE Transactions on Systems, Man, and Cybernetics. Part A: Systems and Humans. 2012. V. 42. No. 3. P. 545–557. https://doi.org/10.1109/TSMCA.2011.2164244
- Andriacchi T., Ogle J., Galante J. Walking speed as a basis for normal and abnormal gait measurements // J. Biomech. 1977. V. 10. No. 4. P. 261–268.
- Han H., Zhou D., Ji T., Zhang J. Modelling of lateral forces generated by pedestrians walking across footbridges // Appl. Math. Modell. 2021. Vol. 89. P. 1775–1791. https://doi.org/10.1016/j.apm.2020.08.081
- Цыпкин Я.З. Устойчивость систем с запаздывающей обратной связью // АиТ. 1946. Т. 7. № 2–3. С. 107–129.
- Никольский А.А. Обобщенные критерии устойчивости особых линейных систем автоматического управления с запаздыванием // Электричество. 2020. Т. 1. С. 38–46. https://doi.org/10.24160/0013-5380-2020-11-38-46
Supplementary files
