Structural Spectral Methods for Solving Continuous Lyapunov Equations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For linear multivariable continuous stationary stable control systems with a simple spectrum, presented in the form of a canonical diagonal form, controllability and observability forms, a method was developed and analytical formulas for spectral decompositions of gramians in the form of various Xiao matrices were obtained. A method and algorithm for calculatin  generalized Xiao matrices in the form of the Hadamard product for multiply connected continuous
linear systems with many inputs and many outputs have been developed. This allows us to calculate the elements of the corresponding controllability and observability gramians in the
form of products of the corresponding elements of the multiplier matrices and a matrix that is the sum of all possible products of the numerator matrices of the matrix transfer function of the system. New results are obtained in the form of spectral and singular decompositions of the inverse gramians of controllability and observability. This makes it possible to obtain invariant decompositions of energy functionals and formulate new criteria for the stability of linear systems taking into account the nonlinear effects of mode interaction.

Sobre autores

I. Yadykin

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: jad@ipu.ru
Moscow, Russia

I. Galyaev

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ivan.galyaev@yandex.ru
Moscow, Russia

Bibliografia

  1. Antoulas A.C. Approximation of Large-Scale Dynamical Systems. SIAM. Philadephia, 2005.
  2. Поляк Б.Т., Хлебников М.В., Рапопорт Л.Б. Теория автоматического управления. Учеб. пособие. М.: ЛЕНАНД, 2019. 504 с.
  3. Зубов Н.Е., Зыбин Е.Ю., Микрин Е.А., Мисриханов М.Ш., Рябченко В.Н. Общие аналитические формы решения уравнений Сильвестра и Ляпунова для непрерывных и дискретных динамических систем // Известия РАН. Теория и системы управления. 2017. № 1. С. 3-20.
  4. Гантмахер Ф.Р. Теория матриц. М.: Наука, 1966.
  5. Икрамов Х.Д. Численное решение матричных уравнений. М.: Наука, 1984. 192 с.
  6. Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. Учебник-М: Изд-во Лань, 2009. 726 с.
  7. Квакернаак Х., Сиван Р. Линейные оптимальные системы управления. М.: Мир, 1977.
  8. Андреев Ю.Н. Управление конечномерными линейными объектами М.: Наука, 1976. 424 c.
  9. Годунов С.К. Лекции по современным аспектам линейной алгебры. Новосибирск: Научная книга, 2002. 216 с.
  10. Проскурников А.В., Фрадков А.Л. Задачи и методы сетевого управления // АиТ. 2016. № 10. С. 3-39.
  11. Жабко А.П., Харитонов В.Л. Методы линейной алгебры в задачах управления: учебное пособие / СПбГУ СПб.: Изд-во СПб. универ-та, 1993. 318 с.
  12. Sreeram V., Agathoklis P. Solution of Lyapunov equation with system matrix in companion form // IEE Proc. D. Control. Theory Appl. 1991. V. 138. No. 6. P. 529-534. https://doi.org/10.1049/ip-d.1991.0074
  13. Xiao C., Feng Z., Shan X. On the Solution of the Continuous-Time Lyapunov Matrix Equation in Two Canonical Forms // IEE Proc. 1992. V. 139. No. 3. P. 286-290. https://doi.org/10.1049/ip-d.1992.0038
  14. Hauksdottir A., Sigurdsson S. The continuous closed form controllability Gramian and its inverse // 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 10-12, 2009. P. 5345-5351. https://doi.org/978-1-4244-4524-0/09
  15. Yadykin I.B. Spectral Decompositions of Gramians of Continuous Stationary Systems Given by Equations of State in Canonical Forms // Mathematics. 2022. V. 10. No. 13. P. 2339. https://doi.org/10.3390/math10132339
  16. Dilip A.S.A. The controllability Gramian, the Hadamard product and the optimal actuator // Leader Sensor Select. Problem Nature Phys. 2015. V. 11. P. 779-786. https://doi.org/10.1109/LCSYS.2019.2919278
  17. Bianchin G., Pasqualetti F. Gramian-Based Optimization for the Analysis and Control of Traffic Networks // IEEE Transactions on Intelligent Transportation Systems. 2022. V. 21. No. 7. P. 3013-3024. https://doi.org/10.1109/TITS.2019.2922900
  18. Himpe C. The Empirical Gramian Framework // Algorithms. 2018. V. 11. No. 91. https://doi.org/10.3390/a11070091
  19. Benner P., Goyal P., Duff I.P. Gramians, Energy Functionals, and Balanced Truncation for Linear Dynamical Systems With Quadratic Outputs // IEEE Transact. Autom. Control. 2022. V. 67. No. 2. P. 886-893. https://doi.org/10.1109/TAC.2021.3086319
  20. Ядыкин И.Б. О свойствах грамианов непрерывных систем управления // АиТ. 2010. № 6. С. 39-50. https://doi.org/10.1134/S0005117910060032
  21. Yadykin I.B., Galyaev A.A. On the methods for calculation of grammians and their use in analysis of linear dynamic systems // Automation and Remote Control. 2013. V. 74. No. 2. P. 207-224.
  22. Ядыкин И.Б., Искаков А.Б. Энергетический подход к анализу устойчивости линейных стационарных динамических систем // АиТ. 2016. № 12. С. 37-58.
  23. Gardner M.F., Barns J.L. Transients in linear systems studied by the Laplace transformation / V. 1. Lumped-constant systems. New York, London. Wiley, Chapman and Hall. 1942.

Declaração de direitos autorais © The Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies