Observation-Based Filtering of State of a Nonlinear Dynamical System with Random Delays

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present a model of a stochastic observation system that allows for time delays between the received observation and the actual state of the observed object that formed these observations. Such delays can occur when observing the movement of an object in a water medium using acoustic sonars and have a significant impact on the accuracy of position tracking. We present equations to solve the optimal mean square filtering problem. Since the practical use of the optimal solution is barely feasible due to its computational complexity, we pay the main attention to an alternative, suboptimal but computationally efficient approach. Specifically, we adapted a conditional minimax nonlinear filter (CMNF) to the proposed model and formulated sufficient existence conditions for its estimate. We conducted a computational experiment on a model that is close to practical needs. The results of the experiment show the effectiveness of CMNF in the model considered. However, they also show a significant decrease in the quality of estimation compared to the model without random observation delays, which can be considered as a motivation for further research into the model and related problems.

About the authors

A. V. Bosov

Institute of Informatics Problems of the Federal Research Center “Computer Science and Control”, Russian Academy of Science

Author for correspondence.
Email: abosov@frccsc.ru
Moscow, Russia

References

  1. Bar-Shalom Y., X.-R. Li, Kirubarajan T. Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software. John Wiley & Sons, Inc. 2002.
  2. Ehlers F. (Ed.) Autonomous Underwater Vehicles: Design and Practice (Radar, Sonar & Navigation). London, UK: SciTech Publishing, 2020.
  3. Luo J., Han Y., Fan L. Underwater Acoustic Target Tracking: A Review // Sensors. 2018. V. 18. No. 1(112).
  4. Ghafoor H., Noh Y. An Overview of Next-Generation Underwater Target Detection and Tracking: An Integrated Underwater Architecture // IEEE Access. 2019. V. 7. P. 98841-98853.
  5. Su X., Ullah I., Liu X., Choi D. A Review of Underwater Localization Techniques, Algorithms, and Challenges // J. Sensors. 2020. V. 2020 (6403161).
  6. Kalman R.E. A New Approach to Linear Filtering and Prediction Problems // Trans. ASME-J. Basic Engineer. 1960. V. 82. Ser. D. P. 35-45.
  7. Bernstein I., Friedland B. Estimation of the State of a Nonlinear Process in the Presence of Nongaussian Noise and Disturbances // J. Franklin Instit. 1966. V. 281. No. 6. P. 455-480.
  8. Julier S.J., Uhlmann J.K., Durrant-Whyte H.F. A new approach for ltering nonlinear systems // Proc. IEEE Amer. Control Conf. (ACC'95), 1995. P. 1628-1632.
  9. Menegaz H.M.T., Ishihara J.Y., Borges G.A., Vargas A.N. A Systematization of the Unscented Kalman Filter Theory // IEEE Trans. Autom. Control. 2015. V. 60. No. 10. P. 2583-2598.
  10. Christ R.D., Wernli R.L. The ROV Manual: A User Guide for Remotely Operated Vehicles. 2nd Edition. Oxford, UK: Butterworth-Heinemann, 2013.
  11. Miller A., Miller B., Miller G. Navigation of Underwater Drones and Integration of Acoustic Sensing with Onboard Inertial Navigation System // Drones. 2021. V. 5. No. 3 (83).
  12. Borisov A., Bosov A., Miller B., Miller G. Passive Underwater Target Tracking: Conditionally Minimax Nonlinear Filtering with Bearing-Doppler Observations // Sensors. 2020. V. 20. No. 8 (2257).
  13. Pankov A.R., Bosov A.V. Conditionally minimax algorithm for nonlinear system state estimation // IEEE Trans. Autom. Control. 1994. V. 39. No. 8. P. 1617-1620.
  14. Bertsekas D.P., Shreve S.E. Stochastic Optimal Control: The Discrete-Time Case. N.Y.: Academic Press, 1978.
  15. Chen Z. Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond // Statist. 2003. V. 182. No. 1. P. 1-69.
  16. Борисов А.В., Босов А.В., Кибзун А.И., Миллер Г.Б., Семенихин К.В. Метод условно-оптимальной нелинейной фильтрации и современные подходы к оцениванию состояний нелинейных стохастических систем // АиТ. 2018. № 1. С. 3-17.
  17. Ширяев А.Н. Вероятность. М.: Наука, 1989.
  18. Пугачев В.С. Рекуррентное оценивание переменных и параметров в стохастических системах, описываемых разностными уравнениями // ДАН СССР. 1978. Т. 243. № 5. С. 1131-1133.
  19. Пугачев В.С. Оценивание переменных и параметров в дискретных нелинейных системах // АиТ. 1979. № 6. С. 63-79.
  20. Weirathmueller M., Weber T.C., Schmidt V., McGillicuddy G., Mayer L., Hu L. Acoustic Positioning and Tracking in Portsmouth Harbor, New Hampshire // Proc. OCEANS 2007, Vancouver, BC, Canada, 29 September - 4 October, 2007. P. 1-4.

Copyright (c) 2023 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies