Neural Network Algorithm for Intercepting Targets Moving along Known Trajectories by a Dubins’ Car

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The task of intercepting a target moving along a rectilinear or circular trajectory by a Dubins’ car is formulated as a problem of time-optimal control with an arbitrary direction of the car’s velocity at the time of interception. To solve this problem and to synthesize interception trajectories, neural network methods of unsupervised learning based on the Deep Deterministic Policy Gradient algorithm are used. The analysis of the obtained control laws and interception trajectories is carried out in comparison with the analytical solutions of the interception problem. Mathematical modeling of the target motion parameters, which the neural network had not previously seen during training, is carried out. Model experiments are conducted to test the stability of the neural solution. The effectiveness of using neural network methods for the synthesis of interception trajectories for given classes of target movements is shown.

About the authors

A. A Galyaev

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: galaev@ipu.ru
Moscow, Russia

A. I Medvedev

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: medvedev.ai18@physics.msu.ru
Moscow, Russia

I. A Nasonov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Author for correspondence.
Email: nasonov.ia18@physics.msu.ru
Moscow, Russia

References

  1. Isaacs R. Differential games. New York: John Wiley and sons, 1965.
  2. Markov A.A. A few examples of solving special problems on the largest and smallest values / The communications of the Kharkov mathematical society. 1889. Ser. 2. V. 1. P. 250-276.
  3. Dubins L.E. On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents // Amer. J. Math. 1957. No. 79. P. 497-516.
  4. Galyaev A.A., Buzikov M.E. Time-Optimal Interception of a Moving Target by a Dubins Car // Autom Remote Control. 2021. V. 82. P. 745-758.
  5. Glizer V.Y., Shinar J. On the structure of a class of time-optimal trajectories // Optim. Control Appl. Method. 1993. V. 14. No. 4. P. 271-279.
  6. Бердышев Ю.И. О задачах последовательного обхода одним нелинейным объектом двух точек // Тр. ИММ УрО РАН. 2005. Т. 11. № 1. C. 43-52.
  7. Xing Z. Algorithm for Path Planning of Curvature-constrained UAVs Performing Surveillance of Multiple Ground Targets // Chin. J. Aeronaut. 2014. V. 27. No. 3. P. 622-633.
  8. Ny J.L., Feron E., Frazzoli E. On the Dubins Traveling Salesman Problem // IEEE Transactions on Automatic Control. 2014. V. 57. P. 265-270.
  9. Yang D., Li D., Sun H. 2D Dubins Path in Environments with Obstacle // Math. Problem. Engineer. 2013. V. 2013. P. 1-6.
  10. Manyam S.G. et al. Optimal dubins paths to intercept a moving target on a circle // Proceedings of the American Control Conference. 2019. V. 2019-July. P. 828-834.
  11. Caruana R., Niculescu-Mizil A. An empirical comparison of supervised learning algorithms // ICML Proceedings of the 23rd international conference on Machine learning. June 2006. P. 161-168.
  12. Arulkumaran K., Deisenroth M.P., Brundage M., Bharath A.A. Deep Reinforcement Learning: A Brief Survey // IEEE Signal Processing Magazine. 2017. V. 34. No. 6. P. 26-38.
  13. Perot E., Jaritz M., Toromanoff M., de Charette R. End-to-End Driving in a Realistic Racing Game with Deep Reinforcement Learning // IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017. P. 474-475.
  14. Al-Talabi A.A., Schwartz H.M. Kalman fuzzy actor-critic learning automaton algorithm for the pursuit-evasion differential game // IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 2016. P. 1015-1022.
  15. Hartmann G., Shiller Z., Azaria A. Deep Reinforcement Learning for Time Optimal Velocity Control using Prior Knowledge // IEEE 31st International Conference on Tools with Artificial Intelligence. 2019. P. 186-193.
  16. Helvig C.S., Gabriel Robins, Alex Zelikovsky The moving-target traveling salesman problem // J. Algorithm. 2003. V. 49. No. 1. 2003. P. 153-174.
  17. Mnih V., Kavukcuoglu K., Silver D. et al. Human-level control through deep reinforcement learning // Nature. 2015. V. 518. P. 529-533.
  18. Uhlenbeck G.E., Ornstein L.S. On the theory of the brownian motion // Physic. Rev. 1930. V. 36. P. 823-841.
  19. Hinton G.E., Srivastava N., Krizhevsky A. et al. Improving neural networks by preventing co-adaptation of feature detectors. arXiv. 2012.
  20. Klambauer G., Unterthiner T., Mayr A. et al. Self-normalizing neural networks // Advances in Neural Information Processing Systems. 2017. P. 972-981.
  21. Buzikov M.E., Galyaev A.A. Minimum-time lateral interception of a moving target by a Dubins car // Automatica. 2022. V. 135. 109968.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 The Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».