Parametric Algorithm for Finding a Guaranteed Solution to a Quantile Optimization Problem

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of stochastic programming with a quantile criterion for a normal distribution is studied in the case of a loss function that is piecewise linear in random parameters and convex in strategy. Using the confidence method, the original problem is approximated by a deterministic minimax problem parameterized by the radius of a ball inscribed in a confidence polyhedral set. The approximating problem is reduced to a convex programming problem. The properties of the measure of the confidence set are investigated when the radius of the ball changes. An algorithm is proposed for finding the radius of a ball that provides a guaranteeing solution to the problem. A method for obtaining a lower estimate of the optimal value of the criterion function is described. The theorems are proved on the convergence of the algorithm with any predetermined probability and on the accuracy of the resulting solution.

About the authors

S. V. Ivanov

Moscow Aviation Institute (National Research University)

Email: sergeyivanov89@mail.ru
Moscow, Russia

A. I. Kibzun

Moscow Aviation Institute (National Research University)

Email: kibzun@mail.ru
Moscow, Russia

V. N. Akmaeva

Moscow Aviation Institute (National Research University)

Author for correspondence.
Email: akmaeva@mail.ru
Moscow, Russia

References

  1. Kibzun A.I., Kan Y.S. Stochastic Programming Problems with Probability and Quantile Functions. Chichester, New York, Brisbane, Toronto, Singapore: John Wiley & Sons, 1996.
  2. Кибзун А.И., Кан Ю.С. Задачи стохастического программирования с вероятностными критериями. М.: Физматлит, 2009.
  3. Кибзун А.И., Наумов А.В. Гарантирующий алгоритм решения задачи квантильной оптимизации // Космические исследования. 1995. Т. 33. № 2. С. 160-165.
  4. Наумов А.В., Иванов С.В. Исследование задачи стохастического линейного программирования с квантильным критерием // АиТ. 2011. № 2. С. 142-158.
  5. Кан Ю.С. Расширение задачи квантильной оптимизации с линейной по случайным параметрам функцией потерь // АиТ. 2020. № 12. С. 67-81.
  6. Васильева С.Н., Кан Ю.С. Метод решения задачи квантильной оптимизации с билинейной функцией потерь // АиТ. 2015. № 9. С. 83-101.
  7. Васильева С.Н., Кан Ю.С. Аппроксимация вероятностных ограничений в задачах стохастического программирования с использованием ядра вероятностной меры // АиТ. 2019. № 11. C. 93-107.
  8. Pr'ekopa A. Stochastic Programming. Dordrecht-Boston: Kluwer, 1995.
  9. Shapiro A., Dentcheva D., Ruszczyn'ski A. Lectures on Stochastic Programming. Modeling and Theory. Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 2014.
  10. Lejeune M.A., Pr'ekopa A. Relaxations for Probabilistically Constrained Stochastic Programming Problems: Review and Extensions // Ann. Oper. Res. 2018. https://doi.org/10.1007/s10479-018-2934-8
  11. Dentcheva D., Pr'ekopa A., Ruszczyn'ski A. On Convex Probabilistic Programming with Discrete Distributions // Nonlinear Anal.-Theor. 2001. V. 47. No. 3. P. 1997-2009.
  12. Van Ackooij W., Berge V., de Oliveira W., Sagastiza'bal C. Probabilistic Optimization via Approximate p-E cient Points and Bundle Methods // Comput. Oper. Res. 2017. V. 77. P. 177-193.
  13. Иванов С.В., Кибзун А.И. Общие свойства двухэтапных задач стохастического программирования с вероятностными критериями // АиТ. 2019. № 6. С. 70-90.
  14. Boyd S., Vandenberghe L. Convex Optimization. Cambridge: University Press, 2009.
  15. Ширяев А.Н. Вероятность. М.: МЦНМО, 2017.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 The Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».