Heuristic Algorithms to Maximize Revenue and the Number of Jobs Processed on Parallel Machines
- 作者: Gholami O.1, Sotskov Y.N.2, Werner F.3, Zatsiupo A.S.4
- 
							隶属关系: 
							- Blekinge Institute of Technology
- United Institute of Informatics Problems
- Otto-von-Guericke-University
- “Servolux,”
 
- 期: 卷 80, 编号 2 (2019)
- 页面: 297-316
- 栏目: Intellectual Control Systems, Data Analysis
- URL: https://journals.rcsi.science/0005-1179/article/view/151296
- DOI: https://doi.org/10.1134/S0005117919020085
- ID: 151296
如何引用文章
详细
A set of jobs has to be processed on parallel machines. For each job, there are given a release time and a due date and the job must be processed no later than its due date. If the job will be completed no later than the given due date, a benefit will be earned. Otherwise, this job will be rejected and the benefit will be discarded. The criterion under consideration is to maximize the weighted sum of the benefits and the number of jobs processed in time. Some properties of the objective function are found which allow to construct a optimal schedule. We develop a simulated annealing algorithm, a tabu search algorithm, and a genetic algorithm for solving this problem. The developed algorithms were tested on moderate and large instances with up to 500 jobs and 50 machines. Some recommendations are given showing how to use the obtained results and developed algorithms in production planning.
作者简介
O. Gholami
Blekinge Institute of Technology
							编辑信件的主要联系方式.
							Email: gholami-iran@yahoo.com
				                					                																			                												                	瑞典, 							Karlskrona						
Y. Sotskov
United Institute of Informatics Problems
							编辑信件的主要联系方式.
							Email: sotskov@newman.bas-net.by
				                					                																			                												                	白俄罗斯, 							Minsk						
F. Werner
Otto-von-Guericke-University
							编辑信件的主要联系方式.
							Email: frank.werner@mathematik.uni-magdeburg.de
				                					                																			                												                	德国, 							Magdeburg						
A. Zatsiupo
“Servolux,”
							编辑信件的主要联系方式.
							Email: ztp-oksana100@ya.ru
				                					                																			                												                	白俄罗斯, 							Mogilev						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					