Heuristic Algorithms to Maximize Revenue and the Number of Jobs Processed on Parallel Machines
- Autores: Gholami O.1, Sotskov Y.N.2, Werner F.3, Zatsiupo A.S.4
- 
							Afiliações: 
							- Blekinge Institute of Technology
- United Institute of Informatics Problems
- Otto-von-Guericke-University
- “Servolux,”
 
- Edição: Volume 80, Nº 2 (2019)
- Páginas: 297-316
- Seção: Intellectual Control Systems, Data Analysis
- URL: https://journals.rcsi.science/0005-1179/article/view/151296
- DOI: https://doi.org/10.1134/S0005117919020085
- ID: 151296
Citar
Resumo
A set of jobs has to be processed on parallel machines. For each job, there are given a release time and a due date and the job must be processed no later than its due date. If the job will be completed no later than the given due date, a benefit will be earned. Otherwise, this job will be rejected and the benefit will be discarded. The criterion under consideration is to maximize the weighted sum of the benefits and the number of jobs processed in time. Some properties of the objective function are found which allow to construct a optimal schedule. We develop a simulated annealing algorithm, a tabu search algorithm, and a genetic algorithm for solving this problem. The developed algorithms were tested on moderate and large instances with up to 500 jobs and 50 machines. Some recommendations are given showing how to use the obtained results and developed algorithms in production planning.
Palavras-chave
Sobre autores
O. Gholami
Blekinge Institute of Technology
							Autor responsável pela correspondência
							Email: gholami-iran@yahoo.com
				                					                																			                												                	Suécia, 							Karlskrona						
Y. Sotskov
United Institute of Informatics Problems
							Autor responsável pela correspondência
							Email: sotskov@newman.bas-net.by
				                					                																			                												                	Belarus, 							Minsk						
F. Werner
Otto-von-Guericke-University
							Autor responsável pela correspondência
							Email: frank.werner@mathematik.uni-magdeburg.de
				                					                																			                												                	Alemanha, 							Magdeburg						
A. Zatsiupo
“Servolux,”
							Autor responsável pela correspondência
							Email: ztp-oksana100@ya.ru
				                					                																			                												                	Belarus, 							Mogilev						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					