A study of the boundaries of stability regions in two-parameter dynamical systems
- Авторы: Yumagulov M.G.1, Mustafina I.Z.1, Ibragimova L.S.2
- 
							Учреждения: 
							- Bashkir State University
- Bashkir State Agrarian University
 
- Выпуск: Том 78, № 10 (2017)
- Страницы: 1790-1802
- Раздел: Nonlinear Systems
- URL: https://journals.rcsi.science/0005-1179/article/view/150697
- DOI: https://doi.org/10.1134/S0005117917100046
- ID: 150697
Цитировать
Аннотация
We consider dynamical systems defined by autonomous and periodic differential equations that depend on two scalar parameters. We study the problems of constructing boundaries of stability regions for equilibrium points in the plane of parameters. We identify conditions under which a point on the boundary of a stability region has one or more smooth boundary curves coming through it. We show schemes to find the basic scenarios of bifurcations when parameters transition over the boundaries of stability regions. We distinguish types of boundaries (dangerous or safe). The main formulas have been obtained in the terms of original equations and do not require to pass to normal forms and using theorems on a central manifold.
Об авторах
M. Yumagulov
Bashkir State University
							Автор, ответственный за переписку.
							Email: yum_mg@mail.ru
				                					                																			                												                	Россия, 							Ufa						
I. Mustafina
Bashkir State University
														Email: yum_mg@mail.ru
				                					                																			                												                	Россия, 							Ufa						
L. Ibragimova
Bashkir State Agrarian University
														Email: yum_mg@mail.ru
				                					                																			                												                	Россия, 							Ufa						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					