The problem of choosing the kernel for one-class support vector machines


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article presents a review of one-class support vector machine (1-SVM) used when there is not enough data for abnormal technological object’s behavior detection. Investigated are three procedures of the SVM’s kernel parameter evaluation. Two of them are known in literature as the cross validation method and the maximum dispersion method, and the third one is an author-suggested modification of the maximum dispersion method, minimizing the kernel matrix’s entropy. It is shown that for classification without counting training data set ejections the suggested procedure provides the classification’s quality equal to the first one, and with less value of the kernel parameter.

作者简介

A. Budynkov

Trapeznikov Institute of Control Sciences

编辑信件的主要联系方式.
Email: alexey.budynkov@gmail.com
俄罗斯联邦, Moscow

S. Masolkin

Trapeznikov Institute of Control Sciences

Email: alexey.budynkov@gmail.com
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017