The problem of choosing the kernel for one-class support vector machines
- Autores: Budynkov A.N.1, Masolkin S.I.1
- 
							Afiliações: 
							- Trapeznikov Institute of Control Sciences
 
- Edição: Volume 78, Nº 1 (2017)
- Páginas: 138-145
- Seção: Control Sciences
- URL: https://journals.rcsi.science/0005-1179/article/view/150524
- DOI: https://doi.org/10.1134/S0005117917010118
- ID: 150524
Citar
Resumo
The article presents a review of one-class support vector machine (1-SVM) used when there is not enough data for abnormal technological object’s behavior detection. Investigated are three procedures of the SVM’s kernel parameter evaluation. Two of them are known in literature as the cross validation method and the maximum dispersion method, and the third one is an author-suggested modification of the maximum dispersion method, minimizing the kernel matrix’s entropy. It is shown that for classification without counting training data set ejections the suggested procedure provides the classification’s quality equal to the first one, and with less value of the kernel parameter.
Sobre autores
A. Budynkov
Trapeznikov Institute of Control Sciences
							Autor responsável pela correspondência
							Email: alexey.budynkov@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
S. Masolkin
Trapeznikov Institute of Control Sciences
														Email: alexey.budynkov@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					