Complete Statistical Theory of Learning
- Авторы: Vapnik V.N.1
- 
							Учреждения: 
							- Columbia University
 
- Выпуск: Том 80, № 11 (2019)
- Страницы: 1949-1975
- Раздел: Topical Issue
- URL: https://journals.rcsi.science/0005-1179/article/view/151205
- DOI: https://doi.org/10.1134/S000511791911002X
- ID: 151205
Цитировать
Аннотация
Existing mathematical model of learning requires using training data find in a given subset of admissible function the function that minimizes the expected loss. In the paper this setting is called Second selection problem. Mathematical model of learning in this paper along with Second selection problem requires to solve the so-called First selection problem where using training data one first selects from wide set of function in Hilbert space an admissible subset of functions that include the desired function and second selects in this admissible subset a good approximation to the desired function. Existence of two selection problems reflects fundamental property of Hilbert space, existence of two different concepts of convergence of functions: weak convergence (that leads to solution of the First selection problem) and strong convergence (that leads to solution of the Second selection problem). In the paper we describe simultaneous solution of both selection problems for functions that belong to Reproducing Kernel Hilbert space. The solution is obtained in closed form.
Об авторах
V. Vapnik
Columbia University
							Автор, ответственный за переписку.
							Email: vladimir.vapnik@gmail.com
				                					                																			                												                	США, 							New York						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					