Accelerated Gradient-Free Optimization Methods with a Non-Euclidean Proximal Operator


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We propose an accelerated gradient-free method with a non-Euclidean proximal operator associated with the p-norm (1 ⩽ p ⩽ 2). We obtain estimates for the rate of convergence of the method under low noise arising in the calculation of the function value. We present the results of computational experiments.

作者简介

E. Vorontsova

Far Eastern Federal University; Université Grenoble Alps

编辑信件的主要联系方式.
Email: vorontsovaea@gmail.com
俄罗斯联邦, Vladivostok; Grenoble

A. Gasnikov

Moscow Institute of Physics and Technology; National Research University Higher School of Economics; Caucasus Mathematical Center

编辑信件的主要联系方式.
Email: gasnikov@yandex.ru
俄罗斯联邦, Moscow; Moscow; Maikop, Republic of Adygea

E. Gorbunov

Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: ed-gorbunov@yandex.ru
俄罗斯联邦, Moscow

P. Dvurechenskii

Weierstrass Institute for Applied Analysis and Stochastics

编辑信件的主要联系方式.
Email: pavel.dvurechensky@gmail.com
德国, Berlin

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019