Nonparametric Estimation of Volatility and Its Parametric Analogs


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper suggests a nonparametric method for stochastic volatility estimation and its comparison with other widespread econometric algorithms. A major advantage of this approach is that the volatility can be estimated even in the case of its completely unknown probability distribution. As demonstrated below, the new method has better characteristics against the popular parametric algorithms based on the GARCH model and Kalman filter.

Sobre autores

A. Dobrovidov

Trapeznikov Institute of Control Sciences

Autor responsável pela correspondência
Email: dobrovidov@gmail.com
Rússia, Moscow

V. Tevosian

Trapeznikov Institute of Control Sciences

Email: dobrovidov@gmail.com
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018