Stochastic online optimization. Single-point and multi-point non-linear multi-armed bandits. Convex and strongly-convex case


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper the gradient-free modification of the mirror descent method for convex stochastic online optimization problems is proposed. The crucial assumption in the problem setting is that function realizations are observed with minor noises. The aim of this paper is to derive the convergence rate of the proposed methods and to determine a noise level which does not significantly affect the convergence rate.

Sobre autores

A. Gasnikov

Moscow Institute of Physics and Technology (State University); Institute for Information Transmission Problems (Kharkevich Institute)

Autor responsável pela correspondência
Email: gasnikov@yandex.ru
Rússia, Moscow; Moscow

E. Krymova

Institute for Information Transmission Problems (Kharkevich Institute)

Email: gasnikov@yandex.ru
Rússia, Moscow

A. Lagunovskaya

Keldysh Institute of Applied Mathematics; Moscow Institute of Physics and Technology (State University)

Email: gasnikov@yandex.ru
Rússia, Moscow; Moscow

I. Usmanova

Moscow Institute of Physics and Technology (State University); Institute for Information Transmission Problems (Kharkevich Institute)

Email: gasnikov@yandex.ru
Rússia, Moscow; Moscow

F. Fedorenko

Moscow Institute of Physics and Technology (State University)

Email: gasnikov@yandex.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017