Gradient-free proximal methods with inexact oracle for convex stochastic nonsmooth optimization problems on the simplex


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper we propose a modification of the mirror descent method for non-smooth stochastic convex optimization problems on the unit simplex. The optimization problems considered differ from the classical ones by availability of function values realizations. Our purpose is to derive the convergence rate of the method proposed and to determine the level of noise that does not significantly affect the convergence rate.

Авторлар туралы

A. Gasnikov

Moscow Institute of Physics and Technology (State University); Institute for Information Transmission Problems (Kharkevich Institute)

Хат алмасуға жауапты Автор.
Email: gasnikov@yandex.ru
Ресей, Moscow; Moscow

A. Lagunovskaya

Moscow Institute of Physics and Technology (State University); Keldysh Institute of Applied Mathematics

Email: gasnikov@yandex.ru
Ресей, Moscow; Moscow

I. Usmanova

Moscow Institute of Physics and Technology (State University); Institute for Information Transmission Problems (Kharkevich Institute)

Email: gasnikov@yandex.ru
Ресей, Moscow; Moscow

F. Fedorenko

Moscow Institute of Physics and Technology (State University)

Email: gasnikov@yandex.ru
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016