Cramér–Rao lower bound in nonlinear filtering problems under noises and measurement errors dependent on estimated parameters


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper derives recurrent expressions for the maximum attainable estimation accuracy calculated using the Cramér–Rao inequality (Cramér–Rao lower bound) in the discretetime nonlinear filtering problem under conditions when generating noises in the state vector and measurement error equations depend on estimated parameters and the state vector incorporates a constant subvector. We establish a connection to similar expressions in the case of no such dependence. An example illustrates application of the obtained algorithms to lowerbound accuracy calculation in a parameter estimation problem often arising in navigation data processing within a model described by the sum of a Wiener sequence and discrete-time white noise of an unknown variance.

Sobre autores

O. Stepanov

State Research Center of the Russian Federation JSC Concern CSRI Elektropribor; ITMO University

Autor responsável pela correspondência
Email: soalax@mail.ru
Rússia, St. Petersburg; St. Petersburg

V. Vasil’ev

State Research Center of the Russian Federation JSC Concern CSRI Elektropribor

Email: soalax@mail.ru
Rússia, St. Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016