Entropy-Based Estimation in Classification Problems
- Авторлар: Dubnov Y.A.1,2,3
- 
							Мекемелер: 
							- Institute for Systems Analysis of the “Computer Science and Control” Federal Research Center of the Russian Academy of Sciences
- National Research University Higher School of Economics
- Moscow Institute (State University) of Physics and Technology
 
- Шығарылым: Том 80, № 3 (2019)
- Беттер: 502-512
- Бөлім: Intellectual Control Systems, Data Analysis
- URL: https://journals.rcsi.science/0005-1179/article/view/151330
- DOI: https://doi.org/10.1134/S0005117919030093
- ID: 151330
Дәйексөз келтіру
Аннотация
The problem of binary classification is considered, an algorithm for its solution is proposed, based on the method of entropy-based estimation of the decision rule parameters. A detailed description of the entropy-based estimation method and the classification algorithm is given, the advantages and disadvantages of this approach are described, the results of numerical experiments and comparisons with the traditional support vector machine for classification accuracy and degree of dependence on the training sample size are presented.
Негізгі сөздер
Авторлар туралы
Yu. Dubnov
Institute for Systems Analysis of the “Computer Science and Control” Federal Research Center of the Russian Academy of Sciences; National Research University Higher School of Economics; Moscow Institute (State University) of Physics and Technology
							Хат алмасуға жауапты Автор.
							Email: yury.dubnov@phystech.edu
				                					                																			                												                	Ресей, 							Moscow; Moscow; Moscow						
Қосымша файлдар
 
				
			 
						 
						 
						 
					 
						 
									 
  
  
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу  Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Тек жазылушылар үшін
		                                		                                        Тек жазылушылар үшін
		                                					