A Hybrid Control System for an Unstable Non-Stationary Plant with a Predictive Model
- Autores: Mitrishkin Y.V.1,2, Golubtsov M.P.1,2
- 
							Afiliações: 
							- Lomonosov Moscow State University
- Trapeznikov Institute of Control Sciences
 
- Edição: Volume 79, Nº 11 (2018)
- Páginas: 2005-2017
- Seção: Control in Technical Systems
- URL: https://journals.rcsi.science/0005-1179/article/view/151068
- DOI: https://doi.org/10.1134/S000511791811005X
- ID: 151068
Citar
Resumo
A hybrid control system with a discrete adaptive predictive model for a nonstationary unstable third-order dynamic plant in continuous time is synthesized and modeled. An adaptive state observer, estimating a variable parameter of the plant model with respect to the a quadratic quality criterion, was synthesized. Continuous estimation of the plant parameter for a discrete sample is used in a discrete adaptive control algorithm with a predictive model. A linear model of the control plant mimics the unstable vertical motion of plasma in a tokamak with a vertical cross-section elongated along the vertical axis compared to a given equilibrium position.
Sobre autores
Yu. Mitrishkin
Lomonosov Moscow State University; Trapeznikov Institute of Control Sciences
							Autor responsável pela correspondência
							Email: yvm@mail.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
M. Golubtsov
Lomonosov Moscow State University; Trapeznikov Institute of Control Sciences
														Email: yvm@mail.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					