Consensus in Asynchronous Multiagent Systems. II. Method of Joint Spectral Radius


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We describe mathematical methods for analyzing the stability, stabilizability and consensus of linear multiagent systems with discrete time. These methods are based on the idea of using the notion of joint/generalized spectral radius of matrix sets to analyze the rate of convergence of matrix products with factors from the sets of matrices with special properties. This is a continuation of the survey by the same authors named “Consensus in Asynchronous Multiagent Systems”; the first part was published in [1].

作者简介

V. Kozyakin

Kharkevich Institute for Information Transmission Problems; Kotelnikov Institute of Radioengineering and Electronics

编辑信件的主要联系方式.
Email: kozyakin@iitp.ru
俄罗斯联邦, Moscow; Moscow

N. Kuznetsov

Kotelnikov Institute of Radioengineering and Electronics; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: kuznetsov@cplire.ru
俄罗斯联邦, Moscow; Moscow

P. Chebotarev

Trapeznikov Institute of Control Sciences; Kotelnikov Institute of Radioengineering and Electronics; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: pavel4e@gmail.com
俄罗斯联邦, Moscow; Moscow; Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019