Approximation of Probabilistic Constraints in Stochastic Programming Problems with a Probability Measure Kernel


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider a linear stochastic programming problem with a deterministic objective function and individual probabilistic constraints. Each probabilistic constraint is a lower bound on the probability function equal to the probability of the fulfillment of a certain linear inequality. We propose to first represent probabilistic constraints in the form of equivalent inequalities for the quantile functions. After that, each quantile function is approximated using the confidence method. The main analytic tool is based on polyhedral approximation of the p-kernel for the multidimensional probability distribution. For the case when probability functions are defined by linear inequalities, constraints on quantile functions are with arbitrary accuracy approximated by systems of deterministic linear inequalities. As a result, the original problem is approximated by a linear programming problem.

Авторлар туралы

S. Vasil’eva

Moscow Aviation Institute (National Research University)

Хат алмасуға жауапты Автор.
Email: sofia_mai@mail.ru
Ресей, Moscow

Yu. Kan

Moscow Aviation Institute (National Research University)

Хат алмасуға жауапты Автор.
Email: yu_kan@mail.ru
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2019