Large Scale Systems Control


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper we propose the quaternion-based control system for quadrotor. Adaptive scheme for thrust coefficients identification, based on speed-gradient method, is designed. Proofs of stability are provided, as well the results of numerical simulations. In existing theoretical works, Euler angles are often used as coordinates for describing quadrotor’s coordinates. Equations using those coordinates, however, have a singularity, which prevents their use near certain points. We use quaternions instead, which have no such restrictions. The process of discovering PID-regulator coefficients is known to be tedious, error-prone and specific for each quadcopter. We propose a control scheme in which most of the parameters are physical values, and the rest do not depend on the quadcopter and can be found once for the whole class of the flying machines. An identification algorithm for obtaining physical parameters is also described. MATLAB modelling is used to test and confirm the performance of the proposed scheme.

作者简介

D. Nikitin

St. Petersburg State University

编辑信件的主要联系方式.
Email: dniken@gmail.com
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019